Parabolas from String Art: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show my series on numerical integration.

Part 1: Introduction

Part 2: Identifying the highest points of the strings

Part 3: These nine points lie on a parabola: Method #1

Part 4: These nine points lie on a parabola: Method #2

Part 5: These nine points lie on a parabola: Method #3

Part 6: Proof that all of the highest points lie on a parabola without calculus, Part 1

Part 7: Proof that all of the highest points lie on a parabola without calculus, Part 2

Part 8: Proof that all of the highest points lie on a parabola with calculus

Part 9: Proof that the strings are indeed tangent to the parabola, with calculus

Part 10: Conclusion

Square roots and Logarithms Without a Calculator: Index

I’m doing something that I should have done a long time ago: collect past series of posts into a single, easy-to-reference post. The following posts formed my series on computing square roots and logarithms without a calculator (with the latest post added).

Part 1: Method #1: Trial and error.

Part 2: Method #2: An algorithm comparable to long division.

Part 3: Method #3: Introduction to logarithmic tables.

Part 4: Finding antilogarithms with a table.

Part 5: Pedagogical and historical thoughts on log tables.

Part 6: Computation of square roots using a log table.

Part 7: Method #4: Slide rules

Part 8: Method #5: By hand, using a couple of known logarithms base 10, the change of base formula, and the Taylor approximation \ln(1+x) \approx x.

Part 9: An in-class activity for getting students comfortable with logarithms when seen for the first time.

Part 10: Method #6: Mentally… anecdotes from Nobel Prize-winning physicist Richard P. Feynman and me.

Part 11: Method #7: Newton’s Method.

Part 12: Method #8: The formula \sqrt{b} \approx \displaystyle \frac{a+b}{2\sqrt{a}}

Thoughts on Numerical Integration: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show my series on numerical integration.

Part 1 and Part 2: Introduction

Part 3: Derivation of left, right, and midpoint rules

Part 4: Derivation of Trapezoid Rule

Part 5: Derivation of Simpson’s Rule

Part 6: Connection between the Midpoint Rule, the Trapezoid Rule, and Simpson’s Rule

Part 7: Implementation of numerical integration using Microsoft Excel

Part 8, Part 9, Part 10, Part 11: Numerical exploration of error analysis

Part 12 and Part 13: Left endpoint rule and rate of convergence

Part 14 and Part 15: Right endpoint rule and rate of convergence

Part 16 and Part 17: Midpoint Rule and rate of convergence

Part 18 and Part 19: Trapezoid Rule and rate of convergence

Part 20 and Part 21: Simpson’s Rule and rate of convergence

Part 22: Comparison of these results to theorems found in textbooks

Part 23: Return to Part 2 and accuracy of normalcdf function on TI calculators

Adding by a Form of 0: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on adding by a form of 0 (analogous to multiplying by a form of 1).

Part 1: Introduction.

Part 2: The Product and Quotient Rules from calculus.

Part 3: A formal mathematical proof from discrete mathematics regarding equality of sets.

Part 4: Further thoughts on adding by a form of 0 in the above proof.

Slightly Incorrect Ugly Mathematical Christmas T-Shirts: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on slightly incorrect ugly mathematical Christmas T-shirts.

Part 1: Missing digits in the expansion of \pi.

Part 2: Incorrect computation of Pascal’s triangle.

Part 3: Incorrect name of Pascal’s triangle.

 

Solving a Math Competition Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on an interesting math competition problem. This series was actually written by my friend Jeff Cagle, department head for mathematics at Chapelgate Christian Academy, as he tried technique after technique to solve this problem. I thought that his resolution to the problem was an excellent example of the process of mathematical problem-solving, and (with his permission) I am posting the process of his solution here. (For the record, I have no doubt that I would not have been able to solve this problem.)

Part 1: Statement of the problem.

Part 2: Initial thoughts on getting a handle on the problem.

Part 3: Initial insight.

Part 4: Geometric insight with a Riemann sphere.

Part 5: Roadblock.

Part 6: Getting past the roadblock.

Part 7: Insight.

Part 8: Proof of insight.

Part 9: Alternate solution (now that we know the answer).

 

Facebook Birthday Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on what I’m calling the Facebook birthday problem, a simple variant of the classic birthday problem in probability.

Part 1: Statement of the Facebook birthday problem.

Part 2: Solution for expected value.

Part 3: Finding the variance (a).

Part 4: Finding the variance (b).

Part 5: Finding the variance (c).

 

My Favorite One-Liners: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show my series on my favorite one-liners.

Mathematical Wisecracks for Almost Any Occasion: Part 2Part 7, Part 8, Part 12, Part 21, Part 28, Part 29, Part 41, Part 46, Part 53, Part 60, Part 63, Part 65, Part 71, Part 79, Part 84, Part 85, Part 100, Part 101Part 108, Part 109, Part 114

All-Purpose Anecdotes: Part 38, Part 50, Part 64, Part 70, Part 92, Part 94

Addressing Misconceptions: Part 3Part 4Part 11, Part 14, Part 15, Part 18, Part 30, Part 32, Part 33, Part 37, Part 45, Part 59

Tricky Steps in a Calculation: Part 5, Part 6

Greek alphabet and choice of variables: Part 40, Part 43, Part 56

Homework and exams: Part 39Part 47, Part 55, Part 57, Part 58, Part 66, Part 77, Part 78, Part 91, Part 96, Part 97, Part 107

Inequalities: Part 99

Simplification: Part 10, Part 102, Part 103

Polynomials: Part 19, Part 48, Part 49, Part 81, Part 90

Inverses: Part 16

Exponential and Logarithmic Functions: Part 1, Part 42, Part 68, Part 80, Part 110

Trigonometry: Part 9, Part 69, Part 76, Part 106

Complex numbers: Part 54, Part 67, Part 86, Part 112, Part 113

Sequences and Series: Part 20, Part 35, Part 111

Combinatorics: Part 27

Statistics: Part 22, Part 23, Part 36, Part 51, Part 52, Part 61, Part 95

Probability: Part 26, Part 31, Part 62, Part 93

Calculus: Part 24, Part 25, Part 72, Part 73, Part 74, Part 75, Part 83, Part 87, Part 88, Part 104

Logic and Proofs: Part 13, Part 17Part 34, Part 44, Part 89, Part 98

Differential Equations: Part 82, Part 105

 

 

 

 

 

 

 

 

 

Decimal Approximations of Logarithms: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on the decimal expansions of logarithms.

Part 1: Pedagogical motivation: how can students develop a better understanding for the apparently random jumble of digits in irrational logarithms?

Part 2: Idea: use large powers.

Part 3: Further idea: use very large powers.

Part 4: Connect to continued fractions and convergents.

Part 5: Tips for students to find these very large powers.

 

Another Poorly Written Word Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series poorly written word problem, taken directly from textbooks and other materials from textbook publishers.

Part 1: Addition and estimation.

Part 2: Estimation and rounding.

Part 3: Probability.

Part 4: Subtraction and estimation.

Part 5: Algebra and inequality.

Part 6: Domain and range of a function.

Part 7: Algebra and inequality.

Part 8: Algebra and inequality.

Part 9: Geometric series.

Part 10: Currently infeasible track and field problem.

Part 11: Another currently infeasible track and field problem.