Engaging students: Deriving the distance formula

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Emma White. Her topic, from Geometry: deriving the distance formula.

green line

How does this topic extend what your students should have learned in previous courses?

In previous courses, it’s safe to say around 8th grade, students learn the Pythagorean Theorem (a^2+b^2=c^2). This deals with the sides and length of a triangle. The Distance Formula is the same concept but with coordinate values and finding the length of a so-called “distance”. We could go as far as to say that the formula can use earthly coordinates, such as North, South, East, West, and all that fall in between. Since the students are familiar with the Pythagorean Theorem, introducing the Distance Formula is a small step up. Another concept that is extended is building on the idea of coordinate points and understanding word problems. As stated earlier, the Distance Formula uses point on a coordinate graph and this can be transformed into a mapping concept, with compass directions. With this topic, students must extend their knowledge on word problems talking about “45 degrees south of east” and “30 degrees north of west” and how to apply this to coordinates.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Wow, the people who contributed to the discovery and development of the Distance Formula might as well be some of the biggest nerds Math majors know. A man by the name of Euclid (known as the father of Geometry) is who started the foundation for this formula. Euclid, as stated in his third Axiom, said it is “possible to construct a circle with any point as its center and with a radius of any length” (also Postulate 3 in “Euclid’s Elements: Book I”). Comparing the Distance Formula to a circle may seem a little confusing but let me challenge you to think again. Look at the standard form of the equation of a circle below:

r^2 = (x-h)^2+(y-k)^2

Now look at the Distance Formula:

d = \sqrt{(x_1-x_0)^2+(y_1-y_0)^2}

There are some similarities, right? Pretty close similarities too! A traveler, scientist, and philosopher by the name of Pythagoras took this idea from Euclid and ran with it, essentially being the man who invented the Distance Formula, or what is called the “Pythagorean Theorem. What interests me the most about this man is that he was a traveler, and he created the “Distance Formula” (get it, because he traveled distances…I thought that was ironic). Lastly, we must recognize Renee DesCartes (he developed the coordinate system which is connected to geometry and the Distance Formula uses these coordinates). Euclid, Pythagoras, and DesCartes contributed to the discovery of the Distance Formula and the development was so exemplifying that many, many, many occupations use it today!

green line

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

I believe technology is close to vital resource when teaching the Distance Formula to students. I say this because the topic is having to do with “going/finding a certain distance” per say. Having access to visuals helps the students put an idea to a tangible concept they experience every day, traveling. The resource below from Desmos is a prime example of how teachers can use technology to teach a lesson and make it interactive. Khan Academy also has some videos in which students can watch and follow along. Even more so, Khan Academy took a scenario from an athlete perspective and answered his question using the Pythagorean Theorem and Distance Formula. Having real life scenarios is what draws students to be engaged. If a student walks into a lesson not knowing the “why”, why are they going to want to sit through your class with a topic they see as useless? Therefore, I think technology, especially visuals (such as Desmos) and the Khan Academy example, would be beneficial for teachers to use in their classrooms when teaching the Distance Formula.

Reference(s):

http://harvardcapstone.weebly.com/history2.html

https://mathcs.clarku.edu/~djoyce/elements/bookI/post3.html

https://www.desmos.com/calculator/s7blqjtusy

https://teacher.desmos.com/activitybuilder/custom/5600a868e795241d06683511

https://www.khanacademy.org/math/algebra-basics/alg-basics-equations-and-geometry/alg-basics-pythagorean-theorem/v/soccer-thiago

https://www.chilimath.com/lessons/intermediate-algebra/derivation-of-distance-formula/

Engaging students: Midpoint formula

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Chi Lin. Her topic, from Geometry: deriving the midpoint formula.

green line

What interesting (i.e., uncontrived) word problems using this topic can your students do now? (You may find resources such as http://www.spacemath.nasa.gov to be very helpful in this regard; feel free to suggest others.)

To let students engage in the topic, as teachers, we want to create some good examples for students to let them interested in doing it. We need to know what students are interested in or students realize they can use this knowledge in the real life. For example, if students like eating pizza, then I will create some examples about pizza or some delicious food and using pizza representation to raise their attention. In this topic, since we are going to talk about the midpoint formula, one of the real-world problems that I can come up with is using Google Maps. I will show a big Google map of the US in the class, and I will ask students question that “Miss Lin is planning a road trip from Dallas to Arizona on Thanksgiving. However, she wants to split the driving into two days. Now Miss Lin needs your help to figure out what is the middle city (midpoint) between Texas (Dallas) to Arizona.” After students talk with their groupmates, I will invite students to come to the map and circle the city that their think is the middle city between Texas (Dallas) to Arizona and explain their thoughts as well.

green line

How does this topic extend what your students should have learned in previous courses?

Khan Academy shows that what students show know before we learn how to derive the midpoint formula. It gives some details which help the teacher to prepare the lesson. First, students should know points in the coordinate plane. Students should require describing every point on the plane with an ordered pair in the form  correctly. Second, students have learned how to use addition, subtraction, and square with negative numbers. Students need to know the distance and slope between points on the coordinate plane, how to represent points on the left or below the original point. Third, students have learned the distance and displacement between points to calculate the slope. Students need to understand what absolute value is as well. The last thing I think students should have learned in the previous class is the slope and square root.

Reference:

https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and-midpoints/a/getting-ready-for-analytic-geometry

green line

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

Khan Academy is a good resource for students to study themselves when they want to study this topic. It tells students what they need to know and why this topic is important before they get to learn. Students might think about deriving the midpoint formula is just figuring out some points in the coordinate plane. However, Khan Academy shows that knowing the midpoint formula is not only for figuring out the points in the coordinate plane but also related to the distance formula. Also, Khan Academy provides online tutoring videos to help students understand the materials. If students don’t understand or forget the materials, they can always go back to check the videos. Khan Academy also provides practices for students to do after each topic, it helps students do the self-checking. I recommend this website because, since the covid, we realize that online learning is also one of the ways for students to learn. However, sometimes it is hard for teachers to check students’ understanding through the screen, and we couldn’t make sure that every student is on the same page with us. Khan Academy does provide detailed explanations on their website, so I will suggest students check this website with this topic if my class is online.

Reference:

https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and-midpoints/a/midpoint-formula

Engaging students: Introducing the parallel postulate

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Enrique Alegria. His topic, from Geometry: introducing the parallel postulate.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

The parallel postulate dates back to a man named Pythagoras of Samos. Pythagoras was a Greek philosopher that created a mysterious cult, the Pythagoreans. The purpose of the cult was to seek out a universal truth about numbers and shapes and became the foundation for Geometry. “The Pythagoreans concluded that the one universal quality of all things in the universe, the one thing that everything had in common, was that it was numerable and could be counted.” (Bryan 2014). Improving the work of Pythagoras and other mathematician predecessors was a man named Euclid who originated from ancient Greece. It was through Pythagoras’s key teachings, such as the Pythagorean Theorem, that began the fundamentals of Geometry.

Euclid wrote thirteen books named the Elements. These books were the entirety of Geometry. The Elements starts with a few simple definitions and postulates that were to be built off of each other to prove propositions. Through that work, Euclid changed the world. A masterpiece of logical thought and deductive reasoning.

Euclid caused controversy for years and years to come due to a specific part from the Elements. The parallel postulate which states, “That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.” Because this postulate makes drastic assumptions it is almost impossible to be proven. For that reason, the parallel postulate has caused so much controversy over the years. Euclid tried to prove all that he could without the parallel postulate and reached Proposition 29 of Book I. This topic further developed as mathematicians believed that the statement could not hold true. From there, several mathematicians are to follow on proving the Parallel Postulate.

green line

How did people’s conception of this topic change over time?

Over time the conception of the parallel postulate changed as many mathematicians tried to prove the postulate. Mathematicians wanted to prove that the postulate was not so much a postulate but a theorem. Several proofs were created, but none had succeeded in proving the postulate from the plane in Euclidean Geometry. As no mathematicians were able to do so they moved towards other dimensions or geometries.

The beginning of Non-Euclidean Geometries. Using the first four postulates of Euclid but create a new definition for the parallel postulate. For example, Nikolay Ivanovich Lobachevsky and János Bolyai were two mathematicians that held all postulates true but the parallel postulate true when discovering Hyperbolic Geometry. The parallel postulate has been modified as such, “For any infinite straight line  and any point  not on it, there are many other infinitely extending straight lines that pass through  and which do not intersect .” (Weisstein) This also led French mathematician Henri Poincaré to show the Hyperbolic Geometry was consistent through the half-plane model.

Many more geometries were able to follow a similar format of creating a parallel postulate equivalent to Euclid’s parallel postulate. “The parallel postulate is equivalent to the equidistance postulatePlayfair’s axiomProclus’ axiom, the triangle postulate, and the Pythagorean theorem.” (Szudzik). Despite the many trial and errors of trying to prove the parallel postulate, peoples’ conception of the topic was able to transform and discover new geometries where the respective parallel postulate can hold to be true.

green line

How can technology be used to effectively engage students with this topic?

Technology can be used to effectively engage students with the parallel postulate through a short series of YouTube videos by the channel Extra Credits. The five-part video series is called “Extra History: History of Non-Euclidean Geometry” with short seven to eight-minute videos which goes through the history of the parallel postulate. The video not only explicitly states what the parallel postulate is, but it goes through the history of how peoples’ conception has changed over time and how it has applied to today’s world and expands into physics.

The video series is produced with high-quality animation and narration. An engaging visual representation of the history of geometry that mathematicians have gone through to prove Euclid’s parallel postulate. Engaging in the countless trials and the amount of time that it has taken to go through this proof. Showcasing other discoveries that Euclidean Geometry has led to being Non-Euclidean Geometry. Lastly, the discoveries that Non-Euclidean Geometries will further lead to. Allowing students to join in on the questioning of the world as we know it.

Citations

Bryan, V., 2014. The Cult Of Pythagoras. [online] Classical Wisdom Weekly. https://classicalwisdom.com/philosophy/cult-of-pythagoras/

Szudzik, Matthew and Weisstein, Eric W. “Parallel Postulate.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/ParallelPostulate.html

Weisstein, Eric W. “Non-Euclidean Geometry.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/Non-EuclideanGeometry.html

https://mathcs.clarku.edu/~djoyce/java/elements/bookI/post5.html

https://www.youtube.com/watch?v=nkvVR-sKJT8&list=PLhyKYa0YJ_5Dj3ZG-Qk9VfaCfo-Nh9S-2

Engaging students: Introducing the parallel postulate

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Eduardo Torres Manzanarez. His topic, from Geometry: introducing the parallel postulate.

green line

A2) How could you as a teacher create an activity or project that involves your topic?

The Parallel Postulate is an interesting statement that intertwines line segments and angles. This postulate states that if a straight line intersects two straight lines and the interior angles on the same side add to less than 180 degrees, then those two straight lines will intersect on that side if the lines are extended. Simply, if a straight line intersects two other straight lines and the interior angles on the same side add up to 180 degrees then the two lines are parallel. One activity that can get students to understand this axiom how test the validity would be to provide sets of straight-line segments and ask students to form interior angles and find their measurements. This would be particularly best to be done with technology such as a software like GeoGebra. Students would be given a set of line segments. First, provide nonparallel line segments such as the ones below.Next, ask students to draw any line segment such that it intersects the two previously given. Letting students make their own particular line segment can suggest that the validity of the statement is universally true.

Now students can use the angle tool to measure the interior angles on both sides. The pictures below are an example.

So, in this example, the right-side interior angles add up to less than 180 degrees and so the given two lines will intersect on the right side. Students can check that the lines segments intersect by placing lines over these segments and check for an intersection. The following image provides evidence as to this being the case for the example.

Hence, this example shows some truth to the postulate. This activity can be further enhanced and propelled by giving students lines that are already parallel and checking any set of interior angles made by a third line segment. Students will find that any segment created will result in the interior angles on both sides to add up to 180 degrees exactly. Such an activity like this would be useful as an introduction to the Parallel Postulate.

green line

D1) What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Euclid, a Greek mathematician, came up with the Parallel Postulate in his discourse titled Elements which was published in 300 BC. Elements is made up of 13 books that contain definitions, theorems, postulates, and proofs that make up Euclidean Geometry. The reason Euclid wanted to accomplish this was to ascertain all of geometry under the same set of axioms or rules so that everything was related to one another. Euclid’s accomplishment in doing this has resulted in him being referenced as the “Father of Geometry”. There is not that much information on Euclid’s life from historical contexts, but he did leave an extensive amount of work that propagated many fields in math such as conics, spherical geometry, and number theory. Elements is estimated to have the greatest number of editions, second to the Bible. The Parallel Postulate by Euclid led to many mathematicians in the 19th century to develop equivalent statements within the contexts of other geometries. Hence Euclid was able to propagate geometry even further, way after he passed away.

 

green line

D2) How was this topic adopted by the mathematical community?

Ever since Elements was made known through the mathematical community, many individuals tried to prove the Parallel Postulate by using the other four postulates Euclid wrote. There is evidence to suggest that Euclid only wrote this particular postulate when he could not continue with the rest of his writings. So, the mathematical community sought out to find a proof for it since the postulate was not clear to be trivially true, unlike the other postulates. Some mathematicians such as Playfair wanted to replace the Parallel Postulate with his own axiom. It was finally shown in 1868 that this postulate is independent of the others and therefore cannot be proven by the other postulates by Eugenio Beltrami. There has been development in a specific type of geometry known as absolute geometry which actually derives geometry without the Parallel Postulate or any other axiom that is equivalent to it. This shows how much the community has been up to challenging the postulate but also how to proceed without it to see if Euclid could have done the same.

 

Engaging students: Defining the terms perpendicular and parallel

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Diana Calderon. Her topic, from Geometry: defining the terms perpendicular and parallel.

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

– This topic of parallel and perpendicular appears in art in the early 1900’s, late 1910’-1930’s. The movement was widely known as De Stijl, which in Dutch means “the style”. This movement had characteristics of “abstract, pared-down aesthetic centered in basic visual elements such as geometric forms and primary colors.” , the two main artists of this artistic movement were Theo can Doesburg and Piet Mondrian. The artistic movement started because of a reaction to the end of World War I, “Partly a reaction against the decorative excesses of Art Deco, the reduced quality of De Stijl art was envisioned by its creators as a universal visual language appropriate to the modern era, a time of a new, spiritualized world order”. As seen below, there are multiple lines, all of which are either perpendicular to each other or parallel, “De Stijl artists espoused a visual language consisting of precisely rendered geometric forms – usually straight lines, squares, and rectangles–and primary colors.”.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic? (You might want to consult Math Through The Ages.)

– When we think of geometry a lot of people instantly think of triangles, SOHCAHTOA, and other 2D or 3D shapes. But when I think of geometry I think of the Greeks and Euclid, the literal father of geometry, only because I learned about him in Dr. Cherry’s class. With that being said, Euclid was one of the first mathematicians to define the term parallel, in specific, parallel lines. In 300 BCE Euclid stated some definitions for the basics of geometry, then give five postulates, “The postulates (or axioms) are the assumptions used to define what we now call Euclidean geometry.” The fifth postulate is what we want to focus on because it is called the parallel postulate, “That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.” He also states how to construct a perpendicular in Proposition 12, “To draw a straight line perpendicular to a given infinite straight line from a given point not on it.”, this construction states that by a given line AB and a point C not on the line then it is possible to construct a perpendicular on line AB.

green line

How could you as a teacher create an activity or project that involves your topic?

– A good group project for the topic of parallel and perpendicular lines would be to allow the students to create a town. The requirements would be for the student’s town to be no bigger than 100 square inches, the students would have the liberty to create any quadrilateral shape as long as it meets the 100 square feet requirement. Another requirement that the project would have is that there must be at least 4 parallel streets, one perpendicular street that is only perpendicular for one of the parallel streets and finally one diagonal street that intersects 3 parallel streets. A town obviously needs to have shops so the students would be required to put shops within the town but must have an explanation as to why the shops were chosen. Finally the students must bring a physical final product, the shops must be in 3D form, the town area may be made with cardboard, cardstock or any material that would sustain the shops on top of it, the streets and corners of streets must be labeled with the corresponding angles. Finally, when they bring their final piece as a class we will walk around and allow the groups to present their product. As an exit ticket for presentation day the students must turn in the definitions of parallel and perpendicular in their owns words and how it was shown in their project product.

Citations:

o Mondrian Returns to France (Figure 1)
https://worldhistoryproject.org/1919/mondrian-returns-to-france

o De Stijl
https://www.theartstory.org/movement/de-stijl/

o The Three Geometries
https://mathstat.slu.edu/escher/index.php/The_Three_Geometries

o Euclid’s Elements I-XIII
https://mathcs.clarku.edu/~djoyce/java/elements/bookI/bookI.html#posts

Engaging students: Parallel and perpendicular lines

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Andrew Cory. His topic, from Algebra: parallel and perpendicular lines.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

An activity can be done with students by giving them a map, with a series of roads that run perpendicular or parallel to each other, asking them to identify pairs of perpendicular and parallel roads. To go beyond this, students can then find the slopes of a set of perpendicular or parallel lines on their own, then be asked to identify how they relate to one another. This will eventually lead them to being able to come up with a general rule to finding lines that are perpendicular or parallel to each other. Students can then be asked to create their own streets that will be perpendicular or parallel to some of the streets given. After this, students should be confident going from the representational model of perpendicular and parallel lines to graphing them on a cartesian plane.

 

green line

B2. How does this topic extend what your students should have learned in previous courses?

Studying perpendicular and parallel lines builds on a student’s knowledge of being able to calculate equations of lines and slopes given different amounts of initial information. It extends their knowledge of calculating slopes, and allows them to do it in reverse. Instead of getting two points to find the slope of the line, they may be given one point and the equation of a perpendicular or parallel line. This allows students to extend and apply their knowledge of linear equations, and gives them more situations to apply it to. This can then be extended to more challenging word problems, challenging students to come up with issues that require related slopes.

 

green line

E1. How can technology be used to effectively engage students with this topic?

Desmos can be very useful with engaging students in anything related to geometry or graphs. There are many resources within the website beyond just graphing two lines and viewing the relationship. A teacher can create their own activities within the website to allow students to explore a concept such as perpendicular and parallel lines, or they could use a pre-existing one created and shared by another educator. These activities give a great visual model of how perpendicular and parallel lines look, and then allow it for students to easily get the equations for each of the lines. Using Desmos can give students the capabilities of generating formulas and relationships on their own, without needing to be told what they are from their teachers. This will allow students a quicker path to mastery of the topic, and will lead them to applying it in a wider variety of areas more quickly than a student who is just told that slopes of parallel lines are equal and slopes of perpendicular lines are opposite reciprocals.

 

 

 

 

 

Engaging students: Midpoint

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Tinashe Meki. His topic, from Geometry: deriving the term midpoint.

green line

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

 

During political elections, we usually hear how candidates are projected to do as the election moves forward. An important marker that usually separates likely candidates to win is the midpoint. Different new channels and news castor tend to use the phrase “midpoint of the election…”, or “midway through the election…” as ways to signify a halfway marker in time or events. The use of midpoint in news is used to describe halfway mark of time, events, distance etc. It’s a flexible word which gives its viewers a marker of how they can predict future events, time or distance. The uses of midpoint is inherently powerful because it simplifies and organizes ideas for views. For example, during time election there are so many stories being reported, different polls and various interpretation of how candidates are doing. Once the midpoint of the elections is reached, news anchors and new outlets provide the viewers with a consensus on how the election is going. That information is better received by the viewers because they can organize all the information they have received and create the own opinions for the second half of the election.

 

 

green line

How could you as a teacher create an activity or project that involves your topic?  What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

https://mathcs.clarku.edu/~djoyce/elements/bookIII/bookIII.html

This topic allows the teacher to simultaneously teach students about mathematical history and provide an engaging activity. I think the best way introduce students to the definition of a midpoint would be to have the students find the midpoint themselves, describe what they have found in their own words then provide them with a formal definition. A way to do that would be to show students how to bisect a line using Euclidian tool (ruler and compass) as the ruler, then have the students name the point where the line is bisected. Ask students to describe that point in their own words about the line. This activity would allow the instructor to introduce students to Euclidean geometry. The cool thing about using Euclidean geometry is that it allows students to visualize geometric concepts. It would provide them concrete understating of geometric topics.

 

green line

How have different cultures throughout time used this topic in their society?

 

https://www.learner.org/courses/learningmath/geometry/session1/part_c/index.html

https://www.ics.uci.edu/~eppstein/junkyard/origami.html

https://plus.maths.org/content/power-origami

 

An interesting approach to define midpoint would be to use origami geometry. Much like Euclid constructions, Origami offers similar constructions and definitions for geometry terms. Origami is Japanese art form that has been around since 200.AD. “Modern mathematicians Humiaki Huzita and Koshiro Hatori devised a complete set of axioms to describe origami geometry — the Huzita–Hatori axioms.” Among these axioms, one of them defines and constructs a proof for the midpoint. Having students construct the midpoint using Huzita and Hatori would be an interesting way to not only introduce the definition of midpoint, but also provide a different approach of explaining geometric concepts.

 

 

Engaging students: Deriving the distance formula

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Peter Buhler. His topic, from Geometry: deriving the distance formula.

green line

How could you as a teacher create an activity or project that involves your topic?

Although the distance formula may be introduced as part of the Geometry curriculum, it also has applications in Algebra and even Pre-calculus. This allows for many possible applications, as it can be used in various ways. One project that students could be assigned to is by modeling something in real life on a coordinate grid, and using the distance formula to calculate various distances within that real life object or place. An example of this could be to take a baseball diamond and use the fact that the bases are 90 feet apart, and calculate the distance between the corners on opposite sides. Another example could be to overlay a map of their town onto a coordinate grid and measure the distance between places that they usually visit. These students can fact check the distances by plugging them in to Google Maps. One aspect of this project to be careful of is to make sure that students are using the distance formula, and not the Pythagorean Theorem. Allowing the students to present their findings could spark curiosity into how mathematics is used in everyday life by city planners, architects, engineers, and in other careers.

green line

How has this topic appeared in high culture?

The following piece of artwork was created by Mel Bochner and titled, Meditation on the Theorem of Pythagoras.

While immediately this picture appears to be related to the proof of the Pythagorean Theorem, There are also applications to the distance formula. This artwork could be a great engaging activity for students as they come into class, simply by reflecting on what can be seen. A challenging question would be to ask students to guess how many hazelnuts they think the artist used to create this artwork (without counting each piece). It should be noted that each corner of the triangle consists of two corners of the squares, so the answer is not simply 9+16+25, but you must subtract off how many are shared.
We can apply this to the distance formula by asking students how to relate the Pythagorean Theorem with the distance formula. Having students compare and contrast these two mathematical equations could provide excellent discussion. As an instructor, you can also overlay this artwork onto a coordinate grid and have students use the distance formula to calculate the various side lengths and confirm that it works.

green line

How was this topic adopted by the mathematical community?

The three mathematics who are primarily responsible for what we know as the distance formula are: Euclid, Pythagoras, and Descartes. Euclid stated in his third Axiom that “it is possible to construct a circle with any point as its center and with a radius of any length”. This matters because the distance formula is a corollary of the circle formula. Pythagoras then took this idea, and proceeded to invent the Pythagorean Theorem, which can be easily converted to the distance formula. Later on, Descartes applied this to the coordinate system, in an event consisting of the union of algebra and geometry.
While this material may seem fairly dry to middle school or high school students who are first learning the Pythagorean Theorem, there are certainly some applications that can make the history more appealing. One such application is to ask the students to connect the formula of a circle with the distance formula, and discuss how they are related. This would provide excellent discussion about how Euclid and Pythagoras may have begun their study of the distance formula. Another application could include assigning students to study one of these three mathematicians, and having them provide several interesting facts about the person they chose to study. Consequently, when introducing the distance formula, students will be familiar with those who had a huge impact on the development of the distance formula.

Sources:
http://harvardcapstone.weebly.com/history2.html
http://artgallery.yale.edu/collections/objects/31192

Engaging students: Midpoint

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Danielle Pope. Her topic, from Geometry: deriving the term midpoint.

green line

How could you as a teacher create an activity or project that involves your topic?

Introducing the definition of a midpoint in the classroom will take using class time to let students explore for themselves. The activity that I would make my students do is have the entire class stand up and have 2 students stand at opposite sides of the room. I would then ask my students to line up shoulder to shoulder. Once they were in a straight line I would ask “who is perfectly in the middle of this line?” This is where I would give my students 10 minutes initially to come up with various ways of how they would prove a student was in the middle of the line. Various “proofs” that they could tell me would be that there is exactly the same number of people on each side of the middle person. If that answer was given I would make an odd number of students stand in line and ask the same question of “Who is in the middle”? They would have to reconsider this answer because they couldn’t cut the student in half but I would hope that they would come to the conclusion that they would have to half the person in order to find the perfect center. Another “proof” that they may give me is measuring the distance from one end to the other and half that distance to find the person in the middle. This can also start that same conversation of how we would find the exact “midpoint” without cutting the person into pieces.

 

green line

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

To get just a basic definition of the midpoint, we can look at the lingo used in all sporting events. All sports have some form of a season that lasts for a certain amount of time. For this example specifically, I will be looking at the football season. Towards the middle of the season teams will know what to expect by the end. Most of the stats and predictions for teams are made already by the middle or midpoint of a season. In this article about football it relates to what changes various teams needed to make by the middle of their season. Just in the article itself, it says that “we’re now at the midpoint of the NFL season, and while some things are beginning to take shape, there’s still plenty of football left to be played.” In this context, students can understand that midpoint is being used to describe the middle of a football season. With this knowledge, they can use those context clues and just add the numbers given to them.

green line

One of the most important people in mathematics to date would have to be Euclid. Euclid’s book, The Elements, is still the backbone of all mathematics taught from kindergarten to college. One artist took this book or manual to mathematics and put it in the form of artwork. Crockett Johnson is an artist who bases his work off of mathematics. He takes the complicated proofs, lemmas, and theorem that have been proved and puts those in a form that we see as beautiful. One piece that uses mostly all midpoints titled “Bouquet of Triangle Theorems”. This piece is based off of the many of Euclid’s propositions about triangle just used together in one piece of art. For example “the midpoints of the sides of the large triangle in the painting are joined to form a smaller one.” Giving students a copy of this picture they can find various characteristics given a ruler and other tools that can help them possibly come to this conclusion that Euclid already proved. Crockett’s pieces can also be seen at the Smithsonian so that could show kids that math really does show up everywhere in our world even in unexpected places.

References
http://americanhistory.si.edu/collections/search/object/nmah_694643

http://www.foxsports.com/nfl/gallery/every-nfl-teams-biggest-weakness-at-the-midpoint-of-the-2016-season-110116