# Engaging students: Finding the domain and range of a function

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Sydney Araujo. Her topic, from Precalculus: finding the domain and range of a function.

How can this topic be used in your students’ future courses in mathematics or science?

Expanding on finding the domain, this topic is frequently seen in calculus classes. Students need to understand the domain to understand and find limits of functions. Continuity directly expands on domain & range and how it works. We also see domain and range when students are exploring projectile motion. This makes since because when we think about projectile motion, we think about parabolas. With projectile motion there is a definite start, end, and peak height of the projectile. So we can use the domain to show how far the projectile travels and the range to show how high it travels. Looking even further ahead when students start to explore different functions and sets, they start to learn about a codomain and comparing it to the range which is a very valuable concept when you start to learn about injective, surjective, and bijective functions.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

Desmos is a great website for students to use when exploring domain and ranges. Desmos has premade inquiry-based lessons for students to explore different topics. Teachers also have the option of creating their own lessons and visuals for their students to interact with. Desmos can also animate functions by showing how they change with a sliding bar or actually animate and show it move. This would be a great tool to use for students to visually understand domain and ranges as well as how they are affected when asymptotes and holes appear. This would also be great for ELLs because instead of focusing on just math vocabulary, they can actually visually see how it connects to the graph and the equation. For example, https://www.desmos.com/calculator/vz4fjtugk9, this ready-made desmos activity actually shows how restricting the domain and range effects the graph and what parts of the graph are actually included with the given domain and range.

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

Like I discussed earlier, domain and range is directly used in calculus. In the movie Stand and Deliver, they directly discuss the domain and range of functions. The movie Stand and Deliver is about a Los Angeles high school teacher, Jaime Escalante, who takes on a troublesome group of students in a not great neighborhood and teaches them math. He gets to the point where he wants to teach them calculus so they can take the advanced placement test. If they pass the advanced placement test then they get college credit which would motivate them to actually go to college and make a better life for themselves. However through great teaching and intensive studying, the students as a whole ace the exam but because of their backgrounds they are accused of cheating and must retake the exam. There is a few scenes, but one in particular where the students are finally understanding key concepts in calculus and Mr. Escalante is having them all say the domain of the function repeatedly.

# Engaging students: Defining a function of one variable

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Lydia Rios. Her topic, from Algebra: defining a function of one variable.

How does this topic extend what your students should have learned in previous courses?

From Prekindergarten and up, students have been practicing skills that prepared them from the concepts of a function. By counting they knew that they were adding that same number to every other number in the same sequence. By doing 1,2,3,4,5,… counting by ones they realized that every left number was being added by one to get the right number. They were taking the input 2 and doing the operation of addition by 1 to get the output of 3. The same thing was happening for other counting sequences, or even general operation statements such as 1+7=8. They have been building up to the idea of functions without recognizing that they were. You can use this no simple idea that’s been installed in them to understand what functions are. You can build them up from here and then start giving them statements with a missing component so they can find a missing variable. Then finally, building them towards defining a function where you give them similar statements with a missing component so that they can start writing out their own equations. *Don’t forget to introduce input and output and that are function represent the relationship between out input (x) is having this operation done to it to get our output (y).

Mathematics Vertical Alignment, Prekindergarten-Grade 2 (texas.gov)

Introduction to Functions | Boundless Algebra (lumenlearning.com)

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

You could use different appearances in pop culture to get students to understand input and output, such as when you are playing video games you are putting your input on the controller to get the output on the screen. However, this may not have an association with function unless you want to start getting into detail about programming. Therefore, to bring about the topic of functions I would just use a word problem that associates with pop culture. You could also bring the business side of pop culture into the class, such as setting up an equation that shows how the more tickets bought makes and increased revenue for the production of a movie. For example, lets say a ticket cost \$8.50 and the production get’s 40% of the profit. Then you could set up the equal as 0.40(8.5X)=Y with 0.40 representing 40% of the profit that the production team will receive of the \$8.50 tickets.

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

The topic of inputs and outputs can be touched on in reference to theatre. Both in lighting and sound, inputs and outputs are used. Therefore, the concept of this can be taught to the students. For lighting, you can talk about DMX which is what LED lights use so that the technology in the lights can pick up the functions that the computer is telling it to do. You connect the DMX in cord to the DMX in into the lighting board and then the DMX out of the lighting board to the DMX out on the lights. The same idea works with audio. However, the inputs are the microphones and the outputs are the speakers. You would take the microphone aux cord and plug that into the inputs on the Sound Board and then you would take the speaker cord and plug that into the outputs on the Sound Board. Therefore, that particular microphone is connected to that speaker and will only come out of that speaker.

“Welcome to Coolmath.” Cool Math – Free Online Cool Math Lessons, Cool Math Games & Apps, Fun Math Activities, Pre-Algebra, Algebra, Precalculus, www.coolmath.com/algebra/15-functions.

# Engaging students: Defining a function of one variable

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Phuong Trinh. Her topic, from Algebra: defining a function of one variable.

How have different cultures throughout time used this topic in their society?

The understanding of functions is crucial in the study of both math and science. Not only that, some functions, especially function with one variable, are often used by everyone in their daily life.  For example, a person wants to buy some cookies and a cake. The person will need to figure how much it will cost them to buy a cake and however many cookies they want. If the cost of the cake is \$12, and the price for each cookie is \$1.50, the person can set up a function of one variable to find the total cost for any number of cookies, expressed as c. The function can be written as f(c) = 1.50c + 12. With this function, the person can substitute any number of cookies and find out how much they would spend for the cookies and cake. Aside from the situation given by this example, function with one variable can also be used in various different scenarios.

What interesting (i.e., uncontrived) word problems using this topic can your students do now? (You may find resources such as http://www.spacemath.nasa.gov to be very helpful in this regard; feel free to suggest others.)

Function with one variable can be used in many real life situations. Word problems can be derived from every day scenarios that the students can relate to.

Problem 1: John is transferring his homework files into his flash drive. This is the formula for the size of the files on John’s drive S (measured in megabytes) as a function of time t (measured in seconds): S (t) = 3t + 25

How many megabytes are there in the drive after 10 seconds?

This problem allows the students to get familiar with the function notation as well as letting the students work with a different variable other than x.

Problem 2: (Found at https://www.vitutor.com/calculus/functions/linear_problems.html )

“A car rental charge is \$100 per day plus \$0.30 per mile travelled. Determine the equation of the line that represents the daily cost by the number of miles travelled and graph it. If a total of 300 miles was travelled in one day, how much is the rental company going to receive as a payment?”

Besides giving the students practice with finding a solution from a function, this problem let the students practice setting up the equation. This also shows the students’ understanding of the subject.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

There are multiple resources that can be used to help the students understand what a function is as well as how they should approach a problem with function. One of the resources can be found at coolmath.com. The layout of the website makes it easy to locate the topic of “Functions” under the “Algebra” tab. By comparing a function with a box, Coolmath defines a function in a way that can be easily understood by students, while also showing how a function can be thought of as visually. The site also provides the explanation for function notation with visuals and examples that are easy to understand. On Coolmath, the students will also have the chance to practice with randomly generated questions. They can also check their answers afterward. On other hands, the site also provides definitions and explanations to other ideas such as domain and range, vertical line tests, etc. Overall, coolmath.com is great to learn for students in and out of the classroom, as well as before and after the lesson.

http://www.coolmath.com/algebra/15-functions

References:

“Linear Function Word Problems.” Inicio, www.vitutor.com/calculus/functions/linear_problems.html.

“Welcome to Coolmath.” Cool Math – Free Online Cool Math Lessons, Cool Math Games & Apps, Fun Math Activities, Pre-Algebra, Algebra, Precalculus, www.coolmath.com/algebra/15-functions.

# Engaging students: Computing the composition of two functions

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Alexandria Johnson. Her topic, from Algebra II/Precalculus: computing the composition of two functions.

The following link is to a worksheet over composition of functions. The worksheet allows students to explore composition of functions without outright telling them what composition of functions is. Instead, the students are working on real world problems about shopping in a store that is having a 20% sale with mystery coupons. In the worksheet, students explore whether or not it matters which discount is applied first and the equations that go along with each scenario. This worksheet is interesting because it approaches composition of functions in an explorative way and it is using a real-world situation students in high school may find relatable, which can help hook students that are math-phobic.

https://betterlesson.com/community/document/1326462/going-shopping-student-materials-docx

Computing the composition of two functions requires prior knowledge of basic operations and combining like terms. This topic will expand upon their knowledge of basic operations by applying them to functions. Students will be able to add, subtract, multiply, and divide functions. Students should be able to use the distribution property; this is important when students are writing (fog)(x) and (gof)(x). During this topic, students should be able to expand upon their knowledge of creating functions from real world problems, which can be seen in the worksheet from the link above.

Musical composition is a way this topic can appear in high culture. Musical composition is the process of combining notes, chords, and melodies in a particular way. Arranging the notes, chords, or melodies in different ways can change the composition. Function composition is the combining of different functions f(x) and g(x) in different ways like addition, subtraction, multiplication, and division. Order usually matters in function composition just like in musical composition. If you have several band students, or musically inclined students, this would be a good hook to grab students interest.

# Hilbert’s Infinite Hotel Paradox

TED-Ed made a very good video describing the Infinite Hotel Paradox, a thought experiment to describe how injective (one-to-one) functions can be used to examine countably infinite sets.

# Engaging students: Finding the domain and range of a function

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Brittany Tripp. Her topic, from Precalculus: finding the domain and range of a function.

How could you as a teacher create an activity or project that involves your topic?

One of my favorite games growing up was Memory. For those who haven’t played, the objective of the game is to find matching cards, but the cards are face down so you take turns flipping over two cards and have to remember where the cards are so when you find the match you can flip both of the matching cards. To win the game you have to have the most matches. I think creating an activity like this, that involves finding domain and range, would be a really fun way to get students’ engaged and excited about the topic. You could place the students in pairs or small groups and give each student a worksheet that has a mixture of functions and graphs of functions. Then the cards that are laying face down would contain various different domains and ranges. In order to get a match you have to find the card that has the correct domain and the card that has the correct range for whatever function or graph you are looking at. You could increase the level of difficulty by having functions, graphs, domains, and ranges on both the worksheet and the cards. This would require the students to not only be able to look at a graph of a function or a function and find the domain and range, but also look at a domain and range and be able to identify the function or graph that fits for that domain and range.

These pictures provide an example of something similar that you could do. I would probably adjust this a little bit so that the domain and ranges aren’t always together and provide actual equations of functions that the students’ must work with as well.

How can this topic be used in your student’s future courses in mathematics or science?

Finding the domain and range of a function is used and expanded on in a variety of ways after precalculus. For instance, one way the domain and range is used in calculus is when evaluating limits. An example is the limit of x-1 as x goes to 1 is equal to zero, because when looking at the graph when the domain, x, is equal to 1 the range, y, is equal to zero. Finding domain and range is something that is applied to a variety of different type of functions in later courses, like when looking at trigonometric functions and the graphs of trigonometric functions. You look at what happens to the domain of a function when you take the derivative in calculus and later courses. You work with the domain and range of different equations and graphs in Multivariable calculus when you are switching to different types of coordinates such as polar, rectangular, and spherical. There are also multiple different science courses that use this topic in some way, one of those being physics. Physics involves a lot of math topics discussed above.

How can technology be used to effectively engage students with this topic?

I found a website called Larson Precalculus that technically is targeted toward specific Precalculus books, but exploring this website a little bit I found that is would be a super beneficial tool to use in a classroom. This website has a variety of different tools and resources that students could use. It has book solutions which if you weren’t actually using that specific textbook could be a really helpful tool for students. This would provide them with problems and solutions that are not exactly the same to what they are doing, but similar enough that they could use them as examples to learn from. This website also includes instructional videos that explain in depth how to tackle different Precalculus topics including finding domain and range. There are interactive exercises which would give the students ample opportunities to practice finding the domain and range of graphs and functions. There are data downloads that give the students to ability to download real data in a spreadsheet that they can use to solve problems. These are only a few of the different resources this website provides to students. There are also chapter projects, pre and post tests, math graphs, and additional lessons. All of these things could be used to engage students and help advance and deepen their understanding of finding domain and range. The only downfall is that it is not a free resource. It is something that would have to be purchased if you chose to use it for your classes.

References:

http://esbailey.cuipblogs.net/files/2015/09/Domain-Range-Matching.pdf

http://17calculus.com/precalculus/domain-range/

http://www.larsonprecalculus.com/pcwl3e/