Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Saundra Francis. Her topic, from Algebra: graphs of linear equations.

green line

B1. How can this topic be used in your students’ future courses in mathematics and science?

Learning how to graph linear equations is the basis for many topics that students will learn later in Algebra and future mathematics and science courses. Students will now be able to solve word problems using graphs to model the situation describe in the problem. Being able to graph linear equations will help students graph non-linear equations since they will be able to apply the steps they learn on how to graph to different types of equations, Students will also be able to graph inequalities to find solutions for an equation since graphing equations is the first step in graphing inequalities. Another application of graphing linear equations is when students need to make graphs when completing science labs, many times students need to graph their data collected and find an equation that represents the data.

green line

C3. How has this topic appeared in the news?

Graphs of linear equations are displayed in the markets sections on The New York Times. Segments of different linear equations can be put together match the graphs that display the rise and fall of different markets and stocks. Time is displayed on the x-axis while the y-axis list the price of the stock. The slope of the line is the percent change in the price of the stock and can be positive or negative depending if the price rose or fell. The y-intercept would be the price that the stock or market was at before the percent change. This will engage students because it is an example of how graphs of linear equations is displayed in the real world and they get a chance to see how they can use this concept in the future. This could also be made into an activity where students discover the linear equations that are combined to make a certain market or stock graph.

green line

D1. What interesting things can you say about the people who contributed to the discovery and/or development of this topic?

René Descartes was born in 1596 and was a French scientist, philosopher, and mathematician. He is thought to be the father of modern philosophy. Descartes started his education at age nine and by the time he was twenty-two he had earned a degree in law. Then Descartes tried to understand the natural world using mathematics and logic, which is when he discovered how to visually represent algebraic equations. Descartes was the first to use a coordinate system to display algebraic equations. In 1637 Descartes published La Géométrie, which was where he first showed how to graph equations. He linked geometry and algebra in order to represent equations visually. While thinking about the nature of knowledge and existence Descartes stated, “I think; therefore I am”, which is one of his most famous thoughts. Students will gain interest in graphing equations when they are told about Descartes since he was an interesting person and he discovered things not only in the field of mathematics but philosophy too.

References
https://www.biography.com/people/ren-descartes-37613
http://www.classzone.com/books/algebra_1/page_build.cfm?content=links_app4_ch4&ch=4
https://markets.on.nytimes.com/research/markets/overview/overview.asp

 

 

Engaging students: Graphing inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Lyndi Mays. Her topic, from Algebra: graphing inequalities.

green line

A1. Once students get to the point where they’re graphing inequalities, they should have a pretty good understanding of how to graph regular functions. I’ve noticed that where students have issues graphing inequalities is knowing which side of the graph should be shaded. Students get confused thinking that the graph should be shaded depending on the direction of the line instead of checking specific points. One activity that I would like to try in the classroom is giving them a worksheet where they graph inequalities on a small graph and when all the little graphs are graphed and shaded it creates a mosaic picture. I feel like there needs to be some sort of pattern or picture so that the students are sure that they’re doing the questions correctly. Another reason I like this activity is because it reaches the intelligence of artistic students. It’s not often that a math lesson can reach artistic intelligences.

 

green line

C1. One thing the students might find interesting about linear inequalities is that they appeared in the popular TV series, Numbers. In this particular episode, there is a blackout from attacks on an electrical substation. In order to figure out where the attack was located they mapped out where the blackouts were happening. Once they filled in all the different places that were blacking out, they realized it was one big section. Then they drew lines as if the map was on the coordinate plane. From there they are able to target the location where the attack happened.
Students also might be interested in knowing that this is also the way that policeman use to locate a cell phone. They mark the three closest cell towers that the cell phone pinged off of and are then able to draw a section and use linear functions to find the cell phone.

 

green line

E1. https://us.sofatutor.com/mathematics/videos/graphing-linear-inequalities

This video shows students how to solve for a variable and graph with inequalities. I liked the way it was set up because it was a word problem set up like a story and then solved. I know that students can become intimidated by having to learn new material and then having to apply it to a word problem. But this video kind of walks them through it which I believe could be helpful. Another thing was that the thing we were solving for was very realistic and might help students see why they would need to know how to graph linear equations in the future. The video also showed what x represented (cookies) and what y represented (lemonade). This lets the students know that x and y actually mean something instead of just being an arbitrary variable. I also liked that the video checked for specific points for the shading portion since many students forget that that’s a possibility and end up guessing where to shade.

 

References:
Sayfan, Sayfan. Graphing Linear Inequalities. https://us.sofatutor.com/mathematics/videos/graphing-linear-inequalities.

 

 

 

Engaging students: Finding x- and y-intercepts

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Deetria Bowser. Her topic, from Algebra: finding x- and y-intercepts. Unlike most student submissions, Maranda’s idea answers three different questions at once.

green line

 

E1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

One example of an engaging form of technology that involves finding x- and y-intercepts of lines is mangahigh.com. Under the algebra section, there is a tab for finding x and y intercepts which once clicked provides an option to start a game (“Algebra.”). In this game, the student is expected to look at lines and quickly decipher what is known about the x and y intercepts of the line in question. Before the game begins, the student is able to choose the difficulty of the game as well as the number of questions. After the game is completed students are able to review their answers. Implementing this website into the classroom will help students gain quickness in identifying x and y intercepts. Additionally, this game is also a quick and fun way to evaluate students understanding of x and y intercepts, without forcing them to take a quiz.

green lineD1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic? (You might want to consult Math Through The Ages.)

The topic of x and y intercepts falls under a much broader topic called analytical geometry.The article “Analytic geometry” defines analytical geometry as “[a] mathematical subject in which algebraic symbolism and methods are used to represent and solve problems in geometry” (D’Souza). One of the people who discovered this topic was René Descartes. René Descartes was actually a french modern philosopher who also made discoveries in the realms of science as well as mathematics. Descartes “dismissed apparent knowledge derived from authority,” meaning that he made his discoveries based on what he thought rather than taking ideas from scientists, philosophers and mathematicians (Watson). He discovered analytical mathematics (along with Fermat) in the 1630s (D’Souza). He also “he stressed the need to consider general algebraic curves—graphs of polynomial equations in x and y of all degrees” (D’Souza). Mentioning Descartes in class, and explaining his accomplishments in Mathematics as well as modern philosophy and science, will encourage students to realize that they can succeed in more than one subject . Also, Descartes can be used as an influence in the building of ideas in the classroom, since he did not just accept ideas already created.

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

The topic of x and y intercepts appeared on a “pop culture blog” called the comeback.com. In an article posted in November 2016, a former UCLA and current Cleveland Indians baseball player named Trevor Bauer helped one of his fans with her math homework (Blazer). This article describes a girl asking Bauer for help determining the slope of a line and the y – intercepts via Twitter. Her specific question involves the equation 2y=x (Blazer). He then explains that “for every 1 unit on the x axis go 2 units on the y axis. y intercept is where it crosses the y axis. Make y 0 and figure x” (Blazer). Since Bauer is a professional baseball player, he already has a great influence over people. Showing students this article about Bauer will show students that even people who play baseball for a living still have the knowledge of Algebra.

 

References
“Algebra.” Mangahigh.com – Algebra,
http://www.mangahigh.com/en-us/math_games/algebra/straight_line_graphs/find_the_x_and_y_intercepts_of_lines. Accessed 15 Sept. 2017.

Blazer, Sam, et al. “Trevor Bauer helped a fan do their math homework on Twitter.” The
Comeback, 13 Nov. 2016,
thecomeback.com/mlb/trevor-bauer-twitter-math-homework.html. Accessed 15 Sept.
2017.

D’Souza, Harry Joseph, and Robert Alan Bix. “Analytic geometry.” Encyclopædia Britannica,
Encyclopædia Britannica, inc., 6 June 2016,
http://www.britannica.com/topic/analytic-geometry. Accessed 15 Sept. 2017.

Watson, Richard A. “René Descartes.” Encyclopædia Britannica, Encyclopædia Britannica, inc.,
27 Jan. 2017, http://www.britannica.com/biography/Rene-Descartes. Accessed 15 Sept. 2017.

Clowns and Graphing Rational Functions

I thought I had heard every silly mnemonic device for remembering mathematical formulas, but I recently heard a new one: the clowns BOBO, BOTU, and BETC for remembering how to graph rational functions.

  • BOB0: bigger (exponent) on bottom, x = 0
  • BOTU: bigger on top, undefined
  • BETC: bottom equals top eponent, coefficients (i.e., the ratio of coefficients)

Which naturally leads to this pearl of wisdom:

Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Anna Park. Her topic, from Algebra: graphs of linear equations.

green line

How could you as a teacher create an activity or project that involves your topic?

  • Have the students enter the room with all of the desks and chairs to the wall, to create a clear floor. On the floor, put 2 long pieces of duct tape that represent the x and y-axis. Have the students get into groups of 3 or 4 and on the board put up a linear equation. One of the students will stand on the Y-axis and will represent the point of the Y-Intercept. The rest of the students have to represent the slope of the line. The students will be able to see if they are graphing the equation right based on how they form the line. This way the students will be able to participate with each other and get immediate feedback. Have the remaining groups of students, those not participating in the current equation, graph the line on a piece of paper that the other group is representing for them. By the end of the engage, students will have a full paper of linear equation examples. The teacher can make it harder by telling the students to make adjustments like changing the y intercept but keeping the slope the same. Or have two groups race at once to see who can physically graph the equation the fastest. Because there is only one “graph” on the floor, have each group go separately and time each group.
  • Have the students put their desks into rows of even numbers. Each group should have between 4 and 5 students. On the wall or white board the teacher has an empty, laminated graph. The teacher will have one group go at a time. The teacher will give the group a linear equation and the student’s have to finish graphing the equation as fast as possible. Each group is given one marker, once the equation is given the first student runs up to the graph and will graph ONLY ONE point. The first student runs back to the second student and hands the marker off to them. That student runs up to the board and marks another point for that graph. The graph is completed once all points are on the graph, the x and y intercepts being the most important. If there are two laminated graphs on the board two groups can go at one time to compete against the other. Similar to the first engage, students will have multiple empty graphs on a sheet of paper that they need to fill out during the whole engage. This activity also gives the students immediate feedback.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Sir William Rowan Hamilton was an Irish mathematician who lived to be 60 years old. Hamilton invented linear equations in 1843. At age 13 he could already speak 13 languages and at the age of 22 he was a professor at the University of Dublin. He also invented quaternions, which are equations that help extend complex numbers. A complex number of the form w + xi + yj + zk, where wxyz are real numbers and ijk are imaginary units that satisfy certain conditions. Hamilton was an Irish physicist, mathematician and astronomer. Hamilton has a paper written over fluctuating functions and solving equations of the 5th degree. He is celebrated in Ireland for being their leading scientist, and through the years he has been celebrated even more because of Ireland’s appreciation of their scientific heritage.

 

 

 

green line

Culture: How has this topic appeared in pop culture?

 

An online video game called “Rescue the Zogs” is a fun game for anyone to play. In order for the player to rescue the zogs, they have to identify the linear equation that the zogs are on. This video game is found on mathplayground.com.

 

References

https://www.teachingchannel.org/videos/graphing-linear-equations-lesson

 

https://www.reference.com/math/invented-linear-equations-ad360b1f0e2b43b8#

 

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

 

http://www.mathplayground.com/SaveTheZogs/SaveTheZogs.html

 

 

Engaging students: Solving systems of linear inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Heidee Nicoll. Her topic, from Algebra: solving linear systems of inequalities.

green line

How could you as a teacher create an activity or project that involves your topic?

I found a fun activity on a high school math teacher’s blog that makes solving systems of linear inequalities rather exciting.

Link: (https://livelovelaughteach.files.wordpress.com/2013/09/treasure-hunt1.pdf)

The students are given a map of the U.S. with a grid and axes over the top, and their goal is to find where the treasure is hidden.  At the bottom of the page there are six possible places the treasure has been buried, marked by points on the map.  The students identify the six coordinate points, and then use the given system of inequalities to find the buried treasure.  This teacher’s worksheet has six equations, and once the students have graphed all of them, the solution contains only one of the six possible burial points.  I think this activity would be very engaging and interesting for the students.  Using the map of the U.S. is a good idea, since it gives them a bit of geography as well, but you could also create a map of a fictional island or continent, and use that as well.  To make it even more interesting, you could have each student create their own map and system of equations, and then trade with a partner to solve.

green line

How does this topic extend what your students should have learned in previous courses?

If students have a firm understanding of inequalities as well as linear systems of equations, then they have all the pieces they need to understand linear systems of inequalities quite easily and effectively.  They know how to write an inequality, how to graph it on the coordinate plane, and how to shade in the correct region.  They also know the different processes whereby they can solve linear systems of equations, whether by graphing or by algebra.  The main difference they would need to see is that when solving a linear system of equations, their solution is a point, whereas with a linear system of inequalities, it is a region with many, possibly infinitely many, points that fit the parameters of the system.  It would be very easy to remind them of what they have learned before, possibly do a little review if need be, and then make the connection to systems of inequalities and show them that it is not something completely different, but is simply an extension of what they have learned before.

green line

How can technology be used effectively to engage students with this topic?

Graphing calculators are sufficiently effective when working with linear systems of equations, but when working with inequalities, they are rather limited in what they can help students visualize.  They can only do ≥, not just >, and have the same problem with <.  It is also difficult to see the regions if you have multiple inequalities because the screen has no color.  This link is an online graphing calculator that has several options for inequalities: https://www.desmos.com/calculator.  You can choose any inequality, <, >, ≤, or ≥, type in several equations or inequalities, and the regions show up on the graph in different colors, making it easier to find the solution region.  Another feature of the graphing calculator is that the equations or inequalities do not have to be in the form of y=.  You can type in something like 3x+2y<7 or solve for y and then type it in.  I would use this graphing calculator to help students visualize the systems of inequalities, and see the solution.  When working with more than two inequalities, I would add just one region at a time to the graph, which you can do in this graphing calculator by clicking the equation on or off, so the students could keep track of what was going on.

References

Live.Love.Laugh.Teach.  Blog by Mrs. Graves.  https://livelovelaughteach.wordpress.com/category/linear-inequalities/

Graphing calculator https://www.desmos.com/calculator

 

 

 

 

Graphs can be made to show anything

It’s 2016, which means it’s another election year. Here’s a very nice article from the last campaign cycle about the bipartisan abuse of statistics to mislead: http://www.washingtonpost.com/blogs/the-fix/wp/2014/10/30/graphs-can-be-made-to-show-anything-campaign-ads-edition/?tid=sm_fb

Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Nada Al-Ghussain. Her topic, from Algebra: graphs of linear equations.

green line

How could you as a teacher create an activity or project that involves your topic?

Positive slope, negative slope, no slope, and undefined, are four lines that cross over the coordinate plane. Boring. So how can I engage my students during the topic of graphs of linear equations, when all they can think of is the four images of slope? Simple, I assign a project that brings out the Individuality and creativity of each student. Something to wake up their minds!

An individualized image-graphing project. I would give each student a large coordinate plane, where they will graph their picture using straight lines only. I would ask them to use only points at intersections, but this can change to half points if needed. Then each student will receive an Equation sheet where they will find and write 2 equations for each different type of slope. So a student will have equations for two horizontal lines, vertical lines, positive slope, and negative slope. The best part is the project can be tailored to each class weakness or strength. I can also ask them to write the slop-intercept form, point slope form, or to even compare slopes that are parallel or perpendicular. When they are done, students would have practiced graphing and writing linear equations many times using their drawn images. Some students would be able to recognize slopes easier when they recall this project and their specific work on it.

 

Example of a project template:

 

projecttemplate

Examples of student work:

studentwork2

 

studentwork1

 

green line

How has this topic appeared in the news?

 

Millions of people tune in to watch the news daily. Information is poured into our ears and images through our eyes. We cannot absorb it all, so the news makes it easy for us to understand and uses graphs of linear equations. Plus, the Whoa! Factor of the slopping lines is really the attention grabber. News comes in many forms either through, TV, Internet, or newspaper. Students can learn to quickly understand the meaning of graphs with the different slopes the few seconds they are exposed to them.

 

On television, FOX news shows a positive slope of increasing number of job losses through a few years. (Beware for misrepresented data!)

graph1

A journal article contains the cost of college increase between public and private colleges showing the negative slope of private costs decreasing.

graph2

Most importantly line graphs can help muggles, half bloods, witches, and wizards to better understand the rise and decline of attractive characters through the Harry Potter series.

graph3

green line

How can this topic be used in your students’ future courses in mathematics or science?

 

Students are introduced to simple graphs of linear equations where they should be able to name and find the equation of the slope. In a student’s future course with computers or tablets, I would use the Desmos graphing calculator online. This tool gives the students the ability to work backwards. I would ask a class to make certain lines, and they will have to come up with the equation with only their knowledge from previous class. It would really help the students understand the reason behind a negative slope and positive slope plus the difference between zero slope and undefined. After checking their previous knowledge, students can make visual representations of graphing linear inequalities and apply them to real-world problems.

 

References:

http://www.hoppeninjamath.com/teacherblog/?p=217

http://walkinginmathland.weebly.com/teaching-math-blog/animal-project-graphing-linear-lines-and-stating-equations

http://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225

http://money.cnn.com/2010/10/28/pf/college/college_tuition/

http://dailyfig.figment.com/2011/07/13/harry-potter-in-charts/

https://www.desmos.com/calculator

 

 

 

Engaging students: Graphing parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Tiffany Wilhoit. Her topic, from Algebra: graphing parabolas.

green line

How did people’s conception of this topic change over time?

 

The parabola has been around for a long time! Menaechmus (380 BC-320 BC) was likely the first person to have found the parabola. Therefore, the parabola has been around since the ancient Greek times. However, it wasn’t until around a century later that Apollonius gave the parabola its name. Pappus (290-350) is the mathematician who discovered the focus and directrix of the parabola, and their given relation. One of the most famous mathematicians to contribute to the study of parabolas was Galileo. He determined that objects falling due to gravity fall in parabolic pathways, since gravity has a constant acceleration. Later, in the 17th century, many mathematicians studied properties of the parabola. Gregory and Newton discovered that parabolas cause rays of light to meet at a focus. While Newton opted out of using parabolic mirrors for his first telescope, most modern reflecting telescopes use them. Mathematicians have been studying parabolas for thousands of years, and have discovered many interesting properties of the parabola.

 

 

green line

How could you as a teacher create an activity or project that involves your topic?

 

A fun activity to set up for your students will include several boxes and balls, for a smaller set up, you can use solo cups and ping pong balls. Divide the class into groups, and give each group a set of boxes and balls. First, have the students set up a tower(s) with the boxes. The students will now attempt to knock the boxes down using the balls. The students can map out the parabolic curve showing the path they want to take. By changing the distance from the student throwing the ball and the boxes, the students will be able to see how the curve changes. If students have the tendency to throw the ball straight instead of in the shape of a parabola, have a member of the group stand between the thrower and the boxes. This will force the ball to be thrown over the student’s head, resulting in the parabolic curve. The students can also see what happens to the curve depending on where the student stands between the thrower and boxes. In order for the students to make a positive parabolic curve, have them throw the ball underhanded. This activity will engage the students by getting them involved and active, plus they will have some fun too! (To start off with, you can show the video from part E1, since the students are playing a real life version of Angry Birds!)

 

 

green line

How can technology be used to effectively engage students with this topic?

 

A great video to show students before studying parabolas can be found on YouTube:

The video uses the popular game Angry Birds to introduce parabolic graphs. First, the video shows the bird flying a parabolic path, but the bird misses the pig. The video goes on to explain why the pig can’t be hit. It does a good job of explaining what a parabola is, why the first parabolic curve would not allow the bird to hit the pig, and how to change the curve to line up the path of the bird to the pig. This video would be interesting to the students, because a majority of the class (if not all) will know the game, and most have played the game! The video goes even further by encouraging students to look for parabolas in their lives. It even gives other examples such as arches and basketball. This will get the students thinking about parabolas outside of the classroom. (This video would be perfect to show before the students try their own version of Angry Birds discussed in part A2)

 

Resources:

 

Youtube.com/watch?v=bsYLPIXI7VQ

Parabolaonline.tripod.com/history.html

http://www-history.mcs.st-and.ac.uk/Curves/Parabola.html

 

 

 

Drought in California

Source: http://www.xkcd.com/1410/