Solving a Math Competition Problem: Part 6

This series of posts concerns solving the following problem from the 2016 University of Maryland High School Mathematics Competition.

A sphere is divided into regions by 9 planes that are passing through its center. What is the largest possible number of regions that are created on its surface?

a. 2^8

b. 2^9

c. 81

d. 76

e. 74

This series was actually written by my friend Jeff Cagle, department head for mathematics at Chapelgate Christian Academy, as he tried technique after technique to solve this problem. I thought that his resolution to the problem was an excellent example of the process of mathematical problem-solving, and (with his permission) I am posting the process of his solution here. (For the record, I have no doubt that I would not have been able to solve this problem.)

OK, so I wanted to prove that each region would be a triangle. So I decided to project the sphere onto a plane.

The projection of four planes:

After a while, I had a chart for max possible regions.

  • 1 plane: Max regions = 2
  • 2 planes: Max regions = 4
  • 3 planes: Max regions = 8 (exponential?)
  • 4 planes: Max regions = 14 (nope!)
  • 5 planes: Max regions = 22 (huh?)

One thought on “Solving a Math Competition Problem: Part 6

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.