Engaging students: Finding the area of a right triangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Andrew Cory. His topic, from Geometry: finding the area of a right triangle.

green line

How can this topic be used in your students’ future courses in mathematics or science?

Finding the area of a right triangle opens up the door to all sorts of applications in the future. The next step is the Pythagorean theorem which is used constantly throughout many math courses. The study of right triangles also opens up the world of trigonometry with students will be using in nearly every math course they go on to take. Once knowledge is learned of right triangles, other triangles can be manipulated to look like right triangles, or to create right triangles within normal triangles. Triangles are even utilized when determining things about other shapes as well, such as dividing rectangles into 2 triangles and other manipulations. If they go on to pursue geometry further, the Pythagorean theorem is one of the first couple of theorems proved and used in book 1 of Euclid.

 

 

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Pythagoras was a Greek philosopher that contributed to right triangles. He is credited with discovering possibly one of the most important right triangle properties. A legend says that after he discovered the Pythagorean theorem, he sacrificed an ox, or possibly an entire hecatomb, or 100 cattle, to the gods. The legitimacy of this legend is questioned because there is a widely held belief that he was against blood sacrifices. The Pythagorean theorem was known and used by Babylonians and Indians centuries before Pythagoras, but it is believed he was the first to introduce it to the Greeks. Some suggest that he was also the first to introduce a mathematical proof, however, some say this is implausible since he was never credited with proving any theorem in antiquity.

 

green line

How can technology be used to effectively engage students with this topic?

Applications such as Geogebra can be used for any type of geometry activity. It is a great way to help kids visualize what is happening with shapes in geometry, something that is usually a struggle for students. For helping students understand how to find the area of a right triangle, it can easily be shown that if you take a rectangle, or a square, and cut it in half diagonally, you get two right triangles. And since the area of a right triangle is half of the area of a rectangle or square. The various ways that shapes can be manipulated virtually can be a big help for students that learn in different ways. Being able to view shapes in different ways opens doors for students who traditionally struggle seeing a shape in their head, and using it to solve their problems.

Sources

https://en.wikipedia.org/wiki/Pythagoras#In_mathematics

Engaging students: Defining the terms perpendicular and parallel

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Diana Calderon. Her topic, from Geometry: defining the terms perpendicular and parallel.

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

– This topic of parallel and perpendicular appears in art in the early 1900’s, late 1910’-1930’s. The movement was widely known as De Stijl, which in Dutch means “the style”. This movement had characteristics of “abstract, pared-down aesthetic centered in basic visual elements such as geometric forms and primary colors.” , the two main artists of this artistic movement were Theo can Doesburg and Piet Mondrian. The artistic movement started because of a reaction to the end of World War I, “Partly a reaction against the decorative excesses of Art Deco, the reduced quality of De Stijl art was envisioned by its creators as a universal visual language appropriate to the modern era, a time of a new, spiritualized world order”. As seen below, there are multiple lines, all of which are either perpendicular to each other or parallel, “De Stijl artists espoused a visual language consisting of precisely rendered geometric forms – usually straight lines, squares, and rectangles–and primary colors.”.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic? (You might want to consult Math Through The Ages.)

– When we think of geometry a lot of people instantly think of triangles, SOHCAHTOA, and other 2D or 3D shapes. But when I think of geometry I think of the Greeks and Euclid, the literal father of geometry, only because I learned about him in Dr. Cherry’s class. With that being said, Euclid was one of the first mathematicians to define the term parallel, in specific, parallel lines. In 300 BCE Euclid stated some definitions for the basics of geometry, then give five postulates, “The postulates (or axioms) are the assumptions used to define what we now call Euclidean geometry.” The fifth postulate is what we want to focus on because it is called the parallel postulate, “That, if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.” He also states how to construct a perpendicular in Proposition 12, “To draw a straight line perpendicular to a given infinite straight line from a given point not on it.”, this construction states that by a given line AB and a point C not on the line then it is possible to construct a perpendicular on line AB.

green line

How could you as a teacher create an activity or project that involves your topic?

– A good group project for the topic of parallel and perpendicular lines would be to allow the students to create a town. The requirements would be for the student’s town to be no bigger than 100 square inches, the students would have the liberty to create any quadrilateral shape as long as it meets the 100 square feet requirement. Another requirement that the project would have is that there must be at least 4 parallel streets, one perpendicular street that is only perpendicular for one of the parallel streets and finally one diagonal street that intersects 3 parallel streets. A town obviously needs to have shops so the students would be required to put shops within the town but must have an explanation as to why the shops were chosen. Finally the students must bring a physical final product, the shops must be in 3D form, the town area may be made with cardboard, cardstock or any material that would sustain the shops on top of it, the streets and corners of streets must be labeled with the corresponding angles. Finally, when they bring their final piece as a class we will walk around and allow the groups to present their product. As an exit ticket for presentation day the students must turn in the definitions of parallel and perpendicular in their owns words and how it was shown in their project product.

Citations:

o Mondrian Returns to France (Figure 1)
https://worldhistoryproject.org/1919/mondrian-returns-to-france

o De Stijl
https://www.theartstory.org/movement/de-stijl/

o The Three Geometries
https://mathstat.slu.edu/escher/index.php/The_Three_Geometries

o Euclid’s Elements I-XIII
https://mathcs.clarku.edu/~djoyce/java/elements/bookI/bookI.html#posts

Engaging students: Using the undefined terms of points, line and plane

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Alec Bui. His topic, from Geometry: using the undefined terms of points, line and plane.

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

This topic appears in a game that I play called League of Legends. To give context, in the game there are a total of 10 players with 5 players on each team. Within each team, they must work together to achieve the goal of destroying the enemy team’s Nexus, which is their base. Most games are not usually this straightforward. You must work with your team to take objectives such as towers, special buffs, and secure kills. This video provides a great summary as to what this game is https://www.youtube.com/watch?v=BGtROJeMPeE.

This topic appears in the game in a very dynamic way, specifically with the champion’s abilities. Each champion’s abilities have different interactions with the game and how it is used. It depends on your cursor placement, which decides what point in the plane you’re aiming at. Also the distance and position of your cursor from your champion can dictate the line in which the ability is casted towards. All of this is conducted on a plane in which the game is played on. These terms are very basic and is inherently understood when playing the game. These inherent concepts depends on the champions and their abilities. Basically the position of the cursor dictates the path and location in which the ability is used on the plane. In terms of the game, this is how you aim and move depending on your character.One specific champion that comes to mind is Thresh. This video (https://www.youtube.com/watch?v=Sv95nBi7ulQ) goes over the champions abilities. Death Sentence, Dark Passage, and Flay all clearly makes use of points (the position in which the cursor is related to the plane) and lines (in relation to where the cursor is respective to the champion, what path & direction will the ability follows).

My background with League of Legends:

●Played the game for about 3-4 years
●I played for our school at UNT (Esports Club)
●What role I played – ADC (Attack Damage Carry)
●In the U.S, I was ranked top 1.87% (in season 8)
●In the world top 2.1% (in season 8)
●Favorite champion: Lee Sin

green line

D5. How have different cultures throughout time used this topic in their society?

This question and topic reminded me of a YouTube channel which I think uses the undefined terms without explicitly saying so. The channel is called “Primitive Tool” which you can search on YouTube. The channel has a multitude of construction videos of different structures such as pools and houses built back with primitive tools. It makes you think how basic knowledge of lines, points, and plane were naturally used without a mathematical explanation or background. It was very natural to consider this vocabulary in normal day to day life which was continuously used. You can see the progression and advancement of this simple vocabulary in our architecture over human history. Different cultures have used this topic expressed through art, architecture, etc. One that sticks out in my head are the Egyptians. It’s clear that basic mastery of the topic is needed to construct the phenomenal pyramids that stand today.

green line

E1. How can technology be used to effectively engage students with this topic?

Geometer’s sketchpad would be a great way to engage this topic. It would be a great way for students to explore the different tools with little to no explanation needed. Student’s can play around with the tools up until guided practice is needed up to the discretion of the teacher. It would be far more engaging than simply explaining what these terms are and going through examples. It provides a dynamic way for the students to interact with all of the terms. This allows them to see the relationship between the terms. They can further their exploration by creating shapes and different polygons with the tools. Overall it’s great dynamic way to learn what the terms are instead of a static manner.

Engaging students: Defining the words acute, right, and obtuse

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Johnny Aviles. His topic: how to engage geometry students when defining the words acute, right, and obtuse.

green line

A1.) How could you as a teacher create an activity or project that involves your topic?

To have the students get engaged with the topic of Defining the terms acute, right, and obtuse, I will begin with having the classroom set up into groups of 4-5. Within their group they will create 10 examples of where each acute, right, and obtuse angles or triangles can be found in the classroom or in the real world in general. For example, the letter Y, end of a sharpened pencil, and the angle under a ladder can be used. They will be given about 10-15 minutes depending on how fast they can all finish. This is a great activity as the students can work together to try to come up with these examples and can familiarize themselves with amount of ways these terms are used in life. I will tell them before I begin the activity that the group that comes up with the most examples will be given extra credit in the next exam or quiz. This will give them extra incentive to stay on task as I am well aware that some groups may finish earlier than the rest and may take that extra time to cause disruptions.

 

 

green line

B1.) How can this topic be used in your students’ future courses in mathematics or science?

In previous courses, students have learned had some exposure to these types of angles. Most students have been familiar with the use of right triangles and have learned methods like the Pythagorean theorem. When we extend the terms acute, right, and obtuse in geometry, it begins to be more intensified. These angles then extend in terms of triangle that will then have many uses. Students will then be expected to not only find missing side lengths but also angles. Students will then be exposed to methods later like, law of sines and cosines, special right triangles, triangle inequality theorem and triangle congruency in. This topic essentially is the stepping stone for a large part of what is soon to be learned. Other courses will use a variety of other was to incorporate the terms acute, right, and obtuse. Geometry, precalculus and trigonometry will essentially have a great deal of uses for these terms for starters and can then also be extended in many higher-level math courses in universities.

 

green line

E1.) How can technology be used to effectively engage students with this topic?

An effective way to teach this topic using technology and the terms acute, right, and obtuse would be games. There is a magnitude of game that involve angles and be beneficial in the understanding of these angles. I have found this one game called Alien Angles. In this game, you are given the angle of where the friendly alien at and you have to launch your rocket to rescue them. the purpose of the game is for students to be familiar with angles and how to find them. after you launch the rocket, you are given a protractor that shows the angles and I believe this is beneficial for students as they can also be more familiar with the application of protractors. I can post this on the promethean board and have students identify what the angle I need to rescue the aliens. I can then call for volunteers to go on the board and try to find the correct angle to launch the rocket.

https://www.mathplayground.com/alienangles.html

 

Facts about the 6-foot zone

Source: https://xkcd.com/2286/

Engaging students: Completing the square

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Haley Higginbotham. Her topic, from Algebra: completing the square.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

To start the activity, I think I would do some examples of how to complete the square and see if anybody notices a pattern in how it is done. If not, I would give them some hints and some time to think about it more deeply, and maybe give them a few more examples to do depending on time and number of previous examples. After they have figured out the pattern, I would ask them if they knew why it worked to add (b/2)^2, and why they need to both add and subtract it. Then, we would go into the second part of the activity, which would require manipulatives. They would get into partners and model different completing the square problems with algebra tiles, and explain both verbally and in writing why adding (and subtracting) (b/2)^2 works to complete the square. I would probably also ask if you could “complete the cube,” and have them justify their answer as an elaborate. green line

B1. How can this topic be used in your students’ future courses in mathematics?

Completing the square is a fairly nifty trick that pops up a decent bit in Calculus 2, particularly in taking integrals of trig functions. Since they need to be in the specific form of (x+a)^2, or some variation thereof. If a student didn’t know how to complete the square, they would get stuck on how to integrate that type of problem. In addition, completing the square is useful when you want to transform a quadratic equation into the vertex form of the equation. It also could have applications in partial fraction decomposition if you are trying to simplify before doing the partial fraction decomposition, and has applications in Laplace transforms through partial fraction decomposition. It is also helpful in solving quadratic equations if it’s not obviously factorable and the quadratic equation is useful but can be tedious to use, especially if you don’t remember how to simplify radicals.

 

green line

B2. How does this topic extend what your students have learned in previous courses?

Students typically learn, or at least have heard of, the quadratic formula before they have learned completing the square. Completing the square can be used to derive the quadratic formula, so they get more of an idea of why it works as opposed to just memorizing the formula. Also, if a student is having trouble remembering what exactly the quadratic formula is, they can use completing the square to re-derive it fairly quickly. Also, it ties the concepts of what they are learning together more so they are more likely to remember what they learned and less likely to see the quadratic formula and completing the square as two random pieces of mathematical information. Depending on the grade level, completing the square can also extend the idea of rewriting equations. They might have been familiar with turning point-slope form into slope intercept form, but not turning what is sometimes the standard form (the quadratic form) into the vertex form of the equation.

 

How to Mow Your Lawn Using Math

News You Can Use, courtesy of Popular Mechanics: The mathematical ways to most efficiently mow your yard, by shape of yard.

https://www.popularmechanics.com/science/math/a28722621/mow-your-lawn-using-math/

Pythagorean Theorem and Social Distancing

Solving a Math Competition Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on an interesting math competition problem. This series was actually written by my friend Jeff Cagle, department head for mathematics at Chapelgate Christian Academy, as he tried technique after technique to solve this problem. I thought that his resolution to the problem was an excellent example of the process of mathematical problem-solving, and (with his permission) I am posting the process of his solution here. (For the record, I have no doubt that I would not have been able to solve this problem.)

Part 1: Statement of the problem.

Part 2: Initial thoughts on getting a handle on the problem.

Part 3: Initial insight.

Part 4: Geometric insight with a Riemann sphere.

Part 5: Roadblock.

Part 6: Getting past the roadblock.

Part 7: Insight.

Part 8: Proof of insight.

Part 9: Alternate solution (now that we know the answer).

 

Engaging students: Area of a trapezoid

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Lissette Molina. Her topic, from Geometry: finding the area of a trapezoid.

green line

How could you as a teacher create an activity or project that involves your topic?

I believe most students in America all discovered finding the area of a trapezoid with one very easy and simple activity. Students are to receive a trapezoid of some different sizes. They are then asked to find area by cutting off the triangular sides. The student then finds that all trapezoids are composed of triangles and a rectangle. This is a very quick activity that requires students to come up with a formula that works across all trapezoids. Learning about finding the area of a shape with hands-on discoveries keeps the formula and how it became embedded into students’ memories. This activity may also work with most polygons.

 

green line

How does this topic extend what your students should have learned in previous courses?

Find the area of a trapezoid does not require much information from previous courses. One major topic the student should be able to have learned before coming into a geometry class should be area. However, very rarely, students do not know what area is already. So, the student should be able to apply what they know about area into finding the area of a trapezoid. This involves finding the area of a rectangle and a triangle. It is important that a student understands exactly where a formula is derived, so it is also important that students know that the trapezoid contains two shapes and that finding the area of those two shapes will help them find the area of the resultant trapezoid.

green lineHow can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

One helpful website or program is Desmos (desmos.com). There are usually modules made for students often made by teachers. I have not yet come across one already made, but here is what I have in mind. Desmos is primarily made for graphing, but there are so many functions in this website that it can be manipulated to perform other things such as the unit circle. One very helpful idea would be to make a shape of a trapezoid by combining two triangles of different sizes off each of a rectangle’s sides. Since these shapes are placed on top of a graph, students would be able to calculate the area by counting the square units. WIth triangles, students can count the number of half, quarter, etc. square units. This way, students can find the area of a trapezoid by counting the squares, and realize that it would be easiest to find the area of those two triangles and one rectangle and combine them.