While I’m easily amused by math humor, I rarely actually laugh out loud after reading a comic strip. That said, I laughed heartily after reading this one.

Source: https://xkcd.com/2283/

While I’m easily amused by math humor, I rarely actually laugh out loud after reading a comic strip. That said, I laughed heartily after reading this one.

Source: https://xkcd.com/2283/

*Posted by John Quintanilla on July 31, 2020*

https://meangreenmath.com/2020/07/31/how-to-picture-an-exponent/

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Tiger Hersh. His topic, from Pre-Algebra: finding points on the coordinate plane.

A2 : How could you as a teacher create an activity or project that involves your topic?

To find a point on a 2-D coordinate plane we would need to have an x-axis and y-axis. Many things in the real world could act as a coordinate plane and that could also be used to create an activity or project. One of those things could be where the students could use a Nerf gun and fire it at a wall with a coordinate plane. This activity would not only be engaging for students but also help them understand how to plot the points on a coordinate plane, but also show students how to find the point on the coordinate plane.

Students will group up and take turns firing darts at a wall that would have a coordinate plane on it. Each group will have different color darts to indicate where each group has plotted their point. Each student in each group will fire two darts at the coordinate plane; After each student has finished plotting their points they will approximate the point and record it down on their worksheet.

Curr1 : How can this topic be used in your students’ future courses in mathematics or science?

Plotting points on a 2-D coordinate plane is used in almost every future course in mathematics. You can observe the usage of 2-D coordinate planes in Geometry, Algebra 1, Algebra 2, Pre-Cal, and so on.

In Geometry you can plot the points of a triangle on the coordinate plane to then find the distance between them with the distance formula or you could find the midpoint between each point using the midpoint formula. These are only some examples that plot points on the 2-D coordinate plane.

In Algebra 1/2 you can see that you can find the slope between two points using the slope equation. You can also use this concept to plot points for equations that involve the slope-intercept form, polynomials, the unit circle, shapes, etc. The points that are plotted could also show what is happening over a period of time and also give us an idea what the equation is trying to tell us.

In Pre-cal you plot points on a coordinate plane in the equation to form the unit circle and also plot points when you have to rotate or transform a shape or equation.

Cul1 : How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

The game Starcraft 2 is a real-time strategy (RTS) game where you have to build an economy to fuel an army and beat the opponent by destroying their infrastructure, economy, or army. Interestingly when you build your building you notice that you are building on a 2-D coordinate plane.

The game itself is in its own 2-D coordinate plane where you have to plan where to move at certain points and also place your buildings at certain points to either block off a ramp or create a concave for your units so that they are able to deal more damage towards the opponent. There are also times in the game where you have to keep in mind about key parts in the map where your opponent is, where your next bases are, where proxies are, and where to set up counter attacks on your opponent.

*Posted by John Quintanilla on July 20, 2020*

https://meangreenmath.com/2020/07/20/engaging-students-finding-points-on-the-coordinate-plane-4/

From the YouTube description: “There are lots of ways to compare a million to a billion, but most of them use volume. And I think that’s a mistake, because volume just isn’t something the human brain is great at. So instead, here’s the difference between a million and a billion, in a more one-dimensional way: distance.”

The video is more than an hour long, which is the point. In the last minute of the video, he mentions what a trillion would be in the same scenario.

*Posted by John Quintanilla on July 17, 2020*

https://meangreenmath.com/2020/07/17/visualizing-one-million-vs-one-billion/

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Andrew Sansom. His topic, from Pre-Algebra: the field axioms of arithmetic (the distributive law, the commutativity and associativity of addition and multiplication, etc.).

Algebra, from one perspective, is the use of numbers’ and operations’ properties to manipulate expressions. Some of these properties, called the field axioms, are crucial to being able to easily solve equations. These properties include associativity, commutativity, distributivity, identity, and inverse. To better appreciate how these properties are so helpful in algebra, it is useful to explore some examples of operations that do not obey these laws.

A1. What interesting (i.e., uncontrived) word problems using this topic can your students do now?

Example 1: The Average (Mean) is Not Associative

Part 1

A math teacher Mrs. Taylor instructs a class of three students: Alice, Bob, and Charlie. The class took an exam last week, but Charlie was sick and missed the test, so he took it today. Mrs. Taylor promised the class that if the class average on the exam was high enough, she would give them all candy. If Alice scored a 96 and Bob scored an 83, what was the class average (the average of those two students) after the first day of the exam?

mean(A,B)= =

Part 2

After Charlie took the exam (he scored an 89), Mrs. Taylor wanted to know if she had to calculate the average from scratch (i.e. add all three scores and divide by three), or if she could just average the previous mean and Charlie’s score (i.e. add your answer from part 1 and Charlie’s score and divide by 2), since she already had done some arithmetic and didn’t want to waste time. Would she find the same answer if she tried both methods? If not, which one is correct? Why?

mean(mean(A,B),C)= =

mean(A,B)= =

Part 3

After her discovery in Part 2, Mrs. Taylor is curious if she first found the mean of Bob and Charlie’s grades, then averaged it with Alice’s grade, if it would be the same as an answer above. Is it? Why or why not?

mean(A,mean(B,C))==

Part 4

What does it mean for an operation to be associative? How does this activity show that the average (mean) is not associative? Why does this mean you have to be extra careful when solving problems with averages?

Example 2: Subtraction is Not Commutative

Part 1

Mrs. Taylor likes to visit Alaska during the summer. When she arrived in Anchorage, it was 10F, but a snowstorm caused the temperature to drop by 21F. Write an equation with subtraction to find the new temperature the next day.

The next summer, when Mrs. Taylor arrives in Anchorage, it is 21F but the temperature drops 10F. Write an equation with subtraction to find the new temperature the next day.

Part 2

What does it mean for an operation to be commutative? Based on what you found in Part 1, is subtraction commutative? Why or why not? Why does that mean you need to be extra careful when solving problems with subtraction?

B2. How does this topic extend what your students should have learned in previous courses?

Prior to pre-algebra, students should be proficient in arithmetic. In that study, they should have been exposed to fact families, which are simple examples of the inverse elements of addition and multiplication. The field axioms generalize these ideas to other objects. Students also should have realized that subtraction and division do not commute, though they likely never used that name. They also likely realized that addition by 0 or multiplication by 1 do not affect the value of the other element. By learning the names of these different properties, students build upon their prior experience to be able to label and acknowledge when these properties appear in other contexts.

B1. How can this topic be used in your students’ future courses in mathematics or science?

Although high school students will spend most of their time working in fields, instead of other algebraic structures such as non-Abelian groups or noncommutative rings, an appreciation and awareness of the field axioms while studying pre-algebra will prepare them for solving equations involving exponents (for example, intuitively questioning whether 2^x=x^2, which are trivially different, but not obvious to the novice). Furthermore, most Algebra II classes do briefly study Matrix Algebra, which is noncommutative (i.e. matrix multiplication does not commute), which causes many interesting conundrums for the uninitiated student while trying to solve problems. This appreciation of the field axioms prepares them for later study in Linear Algebra and Abstract Algebra. Outside of their math classes, vector fields form a critical part of physics, even at the high school level. Although most high school students do not realize it, they have to use the field axioms all the time to solve physics problems.

References:

Use of the mean as a simple example of a non-associative operation courtesy of StackExchange user “Accumulation” on the thread “Non-Associative Operations” (https://math.stackexchange.com/a/2892589)

*Posted by John Quintanilla on July 13, 2020*

https://meangreenmath.com/2020/07/13/engaging-students-the-field-axioms-4/

I recently enjoyed reading about an unanticipated failed marketing campaign of the 1980s. Here’s the money quote:

One of the most vivid arithmetic failings displayed by Americans occurred in the early 1980s, when the A&W restaurant chain released a new hamburger to rival the McDonald’s Quarter Pounder. With a third-pound of beef, the A&W burger had more meat than the Quarter Pounder; in taste tests, customers preferred A&W’s burger. And it was less expensive. A lavish A&W television and radio marketing campaign cited these benefits. Yet instead of leaping at the great value, customers snubbed it.

Only when the company held customer focus groups did it become clear why. The Third Pounder presented the American public with a test in fractions. And we failed. Misunderstanding the value of one-third, customers believed they were being overcharged. Why, they asked the researchers, should they pay the same amount for a third of a pound of meat as they did for a quarter-pound of meat at McDonald’s. The “4” in “¼,” larger than the “3” in “⅓,” led them astray.

Here’s the article: https://gizmodo.com/whats-bigger-1-3-pound-burgers-or-1-4-pound-burgers-1611118517

*Posted by John Quintanilla on April 24, 2020*

https://meangreenmath.com/2020/04/24/whats-bigger-1-3-pound-burgers-or-1-4-pound-burgers/

This is one of the more creative graphs that I’ve ever seen. From the article:

Seung Lee tracked the first year of his baby’s sleep schedule with the BabyConnect app, which lets you export data to CSV. Choosing to work with six minute intervals, Lee then converted the CSVs into JSON (using Google Apps Script and Python) which created a reliable pattern for knitting. The frenetic lines at the top of the blanket indicate the baby’s unpredictable sleep schedule right after birth. We can see how the child grew into a more reliable schedule as the lines reach more columnar patterns.

*Posted by John Quintanilla on April 6, 2020*

https://meangreenmath.com/2020/04/06/a-father-transformed-data-of-his-sons-first-year-of-sleep-into-a-knitted-blanket/

I came across this fun video on proportions, imagining how large some objects would be if atomic (and subatomic) length scales were magnified to the size of a tennis ball.

*Posted by John Quintanilla on February 7, 2020*

https://meangreenmath.com/2020/02/07/fun-with-proportions-and-atoms/

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Phuong Trinh. Her topic, from Algebra: defining a function of one variable.

How have different cultures throughout time used this topic in their society?

The understanding of functions is crucial in the study of both math and science. Not only that, some functions, especially function with one variable, are often used by everyone in their daily life. For example, a person wants to buy some cookies and a cake. The person will need to figure how much it will cost them to buy a cake and however many cookies they want. If the cost of the cake is $12, and the price for each cookie is $1.50, the person can set up a function of one variable to find the total cost for any number of cookies, expressed as c. The function can be written as f(c) = 1.50c + 12. With this function, the person can substitute any number of cookies and find out how much they would spend for the cookies and cake. Aside from the situation given by this example, function with one variable can also be used in various different scenarios.

What interesting (i.e., uncontrived) word problems using this topic can your students do now? (You may find resources such as http://www.spacemath.nasa.gov to be very helpful in this regard; feel free to suggest others.)

Function with one variable can be used in many real life situations. Word problems can be derived from every day scenarios that the students can relate to.

Problem 1: John is transferring his homework files into his flash drive. This is the formula for the size of the files on John’s drive S (measured in megabytes) as a function of time t (measured in seconds): S (t) = 3t + 25

How many megabytes are there in the drive after 10 seconds?

This problem allows the students to get familiar with the function notation as well as letting the students work with a different variable other than x.

Problem 2: (Found at https://www.vitutor.com/calculus/functions/linear_problems.html )

“A car rental charge is $100 per day plus $0.30 per mile travelled. Determine the equation of the line that represents the daily cost by the number of miles travelled and graph it. If a total of 300 miles was travelled in one day, how much is the rental company going to receive as a payment?”

Besides giving the students practice with finding a solution from a function, this problem let the students practice setting up the equation. This also shows the students’ understanding of the subject.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

There are multiple resources that can be used to help the students understand what a function is as well as how they should approach a problem with function. One of the resources can be found at coolmath.com. The layout of the website makes it easy to locate the topic of “Functions” under the “Algebra” tab. By comparing a function with a box, Coolmath defines a function in a way that can be easily understood by students, while also showing how a function can be thought of as visually. The site also provides the explanation for function notation with visuals and examples that are easy to understand. On Coolmath, the students will also have the chance to practice with randomly generated questions. They can also check their answers afterward. On other hands, the site also provides definitions and explanations to other ideas such as domain and range, vertical line tests, etc. Overall, coolmath.com is great to learn for students in and out of the classroom, as well as before and after the lesson.

http://www.coolmath.com/algebra/15-functions

References:

“Linear Function Word Problems.” Inicio, www.vitutor.com/calculus/functions/linear_problems.html.

“Welcome to Coolmath.” Cool Math – Free Online Cool Math Lessons, Cool Math Games & Apps, Fun Math Activities, Pre-Algebra, Algebra, Precalculus, www.coolmath.com/algebra/15-functions.

*Posted by John Quintanilla on June 7, 2019*

https://meangreenmath.com/2019/06/07/engaging-students-defining-a-function-of-one-variable-2/

*engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

This student submission comes from my former student Lissette Molina. Her topic, from Algebra: finding and intercepts.

**What interesting (i.e., uncontrived) word problems using this topic can your students do now? **

Using this topic, students can now use word problems that involve two variables in our everyday lives. One problem that many scientists often use is population growth. In population growth, we can usually see a trend of a line and determine the slope. We initially begin with a certain population in a certain year, this is considered the y-intercept, since we start at the initial year that we consider to be at x=0. Using the slope of the line when we are speaking in terms of population decay, we may then set our y=0 to find when a population would be equal to zero. We can also consider other examples such as the depreciation of a car, or when a business’s grows out of debt and begins to profit. Word problems include, but are not limited to, problems that involve a trend and wanting to find where that trend will lead to at a certain point, x, when we are given an initially amount or reverse this operation.

**How can this topic be used in your students’ future courses in mathematics or science?**

This topic crosses multiple courses in mathematics. In general, knowing the x and y-intercepts of equations help students start outlining what the graph of the function might look like. This gives part of the visual representation needed to complete part of the graph. These intercepts usually also give a prediction of what the shape of the graph may look like. A fun assignment would be giving a student two points on the graph and along with the intercepts of that equation that the points belong to. Along with this, these intercepts give us the solutions of the equations. When there are not x or y-intercepts, we would now know that the solutions do not exist or at least are imaginary. Overall, x and y-intercepts help us get a better understanding of what the graphs of almost all equations must look like. This is essentially especially when we are graphing by hand.

**How can technology be used to effectively engage students with this topic? **

* *

Graphing calculators is one fun essential way of finding intercepts as well as learning functions on a calculator. When a student graphs a function on a graphing calculator, for example, the sine function, we can ask the student where they believe the graph would intercept with the x-axis. We would then ask them to find the intercepts using the calculator by pressing [2nd][trace][4] function and proceed to find the approximated x-intercepts. The student would then find that the intercepts occur at every npi/2. Essentially, using this function is an interesting way of estimating the intercepts along the graph in an interactive way. Other online graphing calculators may do this as well and give students a better understanding of where the intercepts occur.

*Posted by John Quintanilla on May 31, 2019*

https://meangreenmath.com/2019/05/31/engaging-students-finding-x-and-y-intercepts-3/

*engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

This student submission again comes from my former student Victor Acevedo. His topic, from Pre-Algebra: probability and odds.

How can technology be used to effectively engage students with this topic?

There is an online interactive game in which students practice their knowledge on probability. The game is called “Beat the Odds” and it is on PBS’s learning media website. There are two game modes: training and competition. In training mode, students must answer questions about finding the probability of various events. (rolling a die, picking from a deck of cards, etc.) For each correct answer, students earn digital money and the questions scale in difficulty. After the students feel that they have earned enough money, they can switch over to competition mode. Competition mode allows students to bet money against other bot players to see who can answer questions the most accurately. Students are asked various questions and whoever is the closest to the correct answer wins the money in the “pot.” Students can keep playing either until they lose all their money or until they decide to get out while they are ahead.

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

Probability is an integral part to sports analysis. In baseball, batting averages are used to determine a player’s batting ability by dividing the number of successful hits by the number of at bats. This statistic can be used to determine the probability that a player may hit a ball during their next at bat. For example, a player that has a .400 would have roughly a 40% chance of hitting the ball during their next at bat. By using a player’s batting average and other stats, teams can decide how to set up their line up for going up to bat. Typically, the players with the highest batting averages take up the first 5 spots in the lineup. The first three players need to be able to make it on to a base, while the fourth player needs to be a heavy hitter than can possibly have everyone score runs. Coaches consider every players’ batting averages, as well as other stats, to help them determine their best lineup and chances of winning.

How can this topic be used in your students’ future courses in mathematics or science?

Quantum theory is a branch of physics that focuses on studying the different properties of atoms and particles. The most famous application of probability in quantum theory is the concept of the wave-particle duality of light. A thought experiment with Schrodinger’s cat helps to illustrate this idea in terms that most can comprehend. A cat is trapped in a box with a poison gas that is randomly released. As an observer, you cannot tell whether that is dead or alive unless you open the box. Schrodinger theorized that until the box is open, the cat is neither dead nor alive but rather in between. The concept of wave-particle duality states that light and other quantum sized particles can behave as either waves or particles depending on the observer. Theoretical physicists have concluded that this idea of fluctuating realities is an underlying truth of all probabilities. Because of this, physicists believe that either we must accept this as truth and hold true the possibility of multiple universes, or that there may be something wrong with the theory as it currently stands.

References

Beat the Odds. (n.d.). Retrieved from https://kera.pbslearningmedia.org/resource/mgbh.math.sp.beatodds/beat-the-odds/#.W4ndKuhKhPY

Fell, A. (2013, February 5). Does probability come from quantum physics? Retrieved from https://www.ucdavis.edu/news/does-probability-come-quantum-physics/

Freudenrich, C., Ph.D. (2000, July 10). How Light Works. Retrieved from https://science.howstuffworks.com/light6.htm

*Posted by John Quintanilla on May 10, 2019*

https://meangreenmath.com/2019/05/10/engaging-students-probability-and-odds-4/