Engaging students: Multiplying binomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Sarah McCall. Her topic, from Algebra: multiplying binomials.

green line

B2. How does this topic extend what your students should have learned in previous courses?

My hope is that this topic may be easier to understand if student’s can first recall an easier concept that they have already mastered, and then build upon that foundation to learn new skills. For example, at this point students should have already learned the distributive property. To introduce this new concept, I would begin by writing 4(x-5)=4 on the board and asking students what the very first step would be to solve for x. They should know to start by distributing the four to both x and -5, to get 4x-20=4. After completing a few similar examples as a class and/or in groups, then the idea of multiplying binomials would be introduced. This way, students are less intimidated when presented with new material, and they will have a good understanding of how to distribute to each term.

 

green line

D1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Teaching students some of the history behind what they are learning can be a great engaging tool. In this case it is helpful to know where the foil method first originated. I would incorporate this by discussing how it first was used in 1929; in William Bentz’ Algebra for Today. In Algebra for Today, Bentz was the first person to mention the “first terms, outer terms, inner terms, last terms” rule. Students should be knowledgeable about the history behind the math they are using, so that they realize the importance of this method. I also believe that it will be cool for students to see how a method developed is still relevant 88 years later. This technique was created in order to provide a memory aid, or “mnemonic device” to help students learn how to multiply binomials. The fact that it is still being used even today proves what an influential concept it was at its time, and throughout the years.

 

green lineE1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

I am a huge fan of incorporating technology in the classroom, and YouTube is especially great because most students already use YouTube outside of school. The following clip (stopped at 1:48) provides a clear, concise explanation and demonstration of the FOIL method for multiplying binomials. It explains how factoring and foiling are related, and shows students which order to distribute in (first, outer, inner, last). The acronym FOIL is easy for students to remember, and gives them something that they can write down each time they complete a problem to help them distribute properly. Additionally, the clip is just under two minutes, which is the perfect time to ensure that students don’t zone out or lose interest before the end of the video. I would choose to follow up this video by completing a few examples as a class, emphasizing the four steps of foiling as mentioned in the video and how to use them.

References

http://pballew.blogspot.com/2011/02/origin-of-foil-for-binomial.html

Engaging students: Adding and subtracting polynomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Kelly Bui. Her topic, from Algebra: multiplying polynomials.

green line

A2. How could you as a teacher create an activity or project that involves your topic?
The main idea of the activity will be finding an expression to represent the area of the border given the dimensions of the outer rectangle and the inner rectangle. The students will need to know how to multiply binomials and add or subtract polynomials. Therefore, this activity would be towards the end of the unit. Students will be asked to roam around the classroom or the hallway in search of items that already have dimensions labeled. For example, in the hallway there may be a bulletin board with the dimensions (2x² – 7) for the length and (3x – 4) for the width. Inside of the bulletin board, there will be the dimensions of a smaller rectangle. The question will be asked: What expression will represent the area I want to cover if I want to cover the only the border with paper?
Students may work in partners or groups to put minds together to solve this problem. Every object labeled with dimensions will be in the shape of a rectangle and the math involved will require students to multiply binomials and subtract polynomials.

 

green lineB2. How does this topic extend what your students should have learned in previous courses?
Before students learn to add and subtract polynomials, they learn how to combine like terms such as 3x and 5x. When we add and subtract polynomials, it is very similar to combining like terms in algebraic expressions. Students will need be familiar with the concept of combing like terms before they add or subtract polynomials. To introduce the topic of combining polynomials, it can be set up horizontally.

Such as: (3x² – 5x + 6) – (6x² – 4x + 9)

By setting it up this way, students can determine which terms can be combined and which terms need to be left alone. Additionally, students will build on the concept of combining like terms as it applies to this process as well. Setting it up horizontally will also increase the chance of preventing the mistake of forgetting to distribute the negative sign throughout the second polynomial. Once students are comfortable doing it this way, the addition and subtraction can be set up as a vertical problem where students must now take the step to align the like terms together in order to add or subtract. By taking the step to set up the polynomials horizontally before vertically, it will give the students a deeper understanding of what concept is actually behind adding and subtracting polynomials.

 

green line

E1. How can technology be used to effectively engage students with this topic?

The website http://www.quia.com provides a multitude of activities relating to different subjects. The game I chose to correlate adding and subtracting polynomials is identical to the actual game Battleship. The game can be played by anyone with access to the internet and Adobe. This game is interactive because you won’t have to perform math on every single shot fired at the enemy. If the student does hit one of the vessels, in order to actually “hit” the enemy’s ship, the student must successfully add or subtract two polynomials. If a student hits a vessel but is unable to solve the polynomial correctly, the game will highlight the hit area so that the student can try again. This game can either engage the students to see who can sink all of the enemy’s ships first, or it can be assigned as a homework assignment that requires showing work and screenshotting the end result of the game. Lastly, you can choose the level of difficulty of the game. For example, on the hard level, you must determine the missing addend or minuend to the expression, or add or subtract polynomials of different degrees.
The website also offers an option to create your own activities, so if Battleship isn’t panning out as desired, it is possible to create your own game for your students.
Game: https://www.quia.com/ba/28820.html

References:

Area of the Border: https://www.sophia.org/concepts/adding-and-subtracting-polynomials-in-the-real-world

Combining Like Terms: https://courses.lumenlearning.com/boundless-algebra/chapter/introduction-to-polynomials/

Battleship: https://www.quia.com/ba/28820.html

Engaging students: Using the point-slope equation of a line

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Rachel Delflache. Her topic, from Algebra: using the point-slope equation of a line.

green line

 

A2: How could you as a teacher create an activity that involves the topic?

An adaptation of the stained-glass window project could be used to practice the point-slope formula (picture beside). Start by giving the students a piece of graph paper that is shaped like a traditional stained-glass window and then let they students create a window of their choosing using straight lines only. Once they are done creating their window, ask them to solve for and label the equations of the lines used in their design. While this project involves the point slope formula in a rather obvious way, giving the students the freedom to create a stained-glass window that they like helps to engage the students more than a normal worksheet. Also, by having them solve for the equations of the lines they created it is very probable that the numbers they must use for the equation will not be “pretty numbers” which would add an addition level of difficulty to the assignment.

green line

B2: How does this topic extend what your students should have learned in previous courses?

The point-slope formula extends from the students’ knowledge of the slope formula

m = (y2-y1)/(x2-x1)
(x2-x1)m = y2-y1
y-y1 = m(x-x1).

This means that the students could solve for the point-slope formula given the proper information and prompts. By allowing students to solve for the point-slope formula given the previous knowledge of the formula for slope, it gives the students a deeper understanding of how and why the point-slope formula works the way it does. Allowing the students to solve for the point-slope formula also increases the retention rate among the students.

 

green line

C1&3: How has this topic appeared in pop culture and the news?

Graphs are everywhere in the news, like the first graph below. While they are often time line charts, each section of the line has its own equation that could be solved for given the information found on the graph. One of the simplest way to solve for each section of the line graph would be to use point slope formula. The benefit of using point slope formula to solve for the equations of these graphs is that there is very minimal information needed—assuming that two coordinates can be located on the graph, the linear equation can be solved for. Another place where graphs appear is in pop culture. It is becoming more common to find graphs like the second one below. These graphs are often time linear equation for which the formula could be solved for using the point slope formula. These kinds of graphs could be used to create an activity where the students use the point slope formula to solve to the equations shown in either the real world or comical graph.

 

 

References:

Stained glass window-
http://digitallesson.com/stained-glass-window-graphing-project/

iPhone sales-
https://www.usatoday.com/story/tech/news/2017/06/28/iphones-smartphone-revolution-4-graphs/103216746/

Halloween graph-
https://www.buzzfeed.com/agh/halloween-charts-and-graphs?utm_term=.hpXrNWPm9#.qpvwGmxp0

 

 

Engaging students: Finding x- and y-intercepts

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Deetria Bowser. Her topic, from Algebra: finding x- and y-intercepts. Unlike most student submissions, Maranda’s idea answers three different questions at once.

green line

 

E1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

One example of an engaging form of technology that involves finding x- and y-intercepts of lines is mangahigh.com. Under the algebra section, there is a tab for finding x and y intercepts which once clicked provides an option to start a game (“Algebra.”). In this game, the student is expected to look at lines and quickly decipher what is known about the x and y intercepts of the line in question. Before the game begins, the student is able to choose the difficulty of the game as well as the number of questions. After the game is completed students are able to review their answers. Implementing this website into the classroom will help students gain quickness in identifying x and y intercepts. Additionally, this game is also a quick and fun way to evaluate students understanding of x and y intercepts, without forcing them to take a quiz.

green lineD1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic? (You might want to consult Math Through The Ages.)

The topic of x and y intercepts falls under a much broader topic called analytical geometry.The article “Analytic geometry” defines analytical geometry as “[a] mathematical subject in which algebraic symbolism and methods are used to represent and solve problems in geometry” (D’Souza). One of the people who discovered this topic was René Descartes. René Descartes was actually a french modern philosopher who also made discoveries in the realms of science as well as mathematics. Descartes “dismissed apparent knowledge derived from authority,” meaning that he made his discoveries based on what he thought rather than taking ideas from scientists, philosophers and mathematicians (Watson). He discovered analytical mathematics (along with Fermat) in the 1630s (D’Souza). He also “he stressed the need to consider general algebraic curves—graphs of polynomial equations in x and y of all degrees” (D’Souza). Mentioning Descartes in class, and explaining his accomplishments in Mathematics as well as modern philosophy and science, will encourage students to realize that they can succeed in more than one subject . Also, Descartes can be used as an influence in the building of ideas in the classroom, since he did not just accept ideas already created.

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

The topic of x and y intercepts appeared on a “pop culture blog” called the comeback.com. In an article posted in November 2016, a former UCLA and current Cleveland Indians baseball player named Trevor Bauer helped one of his fans with her math homework (Blazer). This article describes a girl asking Bauer for help determining the slope of a line and the y – intercepts via Twitter. Her specific question involves the equation 2y=x (Blazer). He then explains that “for every 1 unit on the x axis go 2 units on the y axis. y intercept is where it crosses the y axis. Make y 0 and figure x” (Blazer). Since Bauer is a professional baseball player, he already has a great influence over people. Showing students this article about Bauer will show students that even people who play baseball for a living still have the knowledge of Algebra.

 

References
“Algebra.” Mangahigh.com – Algebra,
http://www.mangahigh.com/en-us/math_games/algebra/straight_line_graphs/find_the_x_and_y_intercepts_of_lines. Accessed 15 Sept. 2017.

Blazer, Sam, et al. “Trevor Bauer helped a fan do their math homework on Twitter.” The
Comeback, 13 Nov. 2016,
thecomeback.com/mlb/trevor-bauer-twitter-math-homework.html. Accessed 15 Sept.
2017.

D’Souza, Harry Joseph, and Robert Alan Bix. “Analytic geometry.” Encyclopædia Britannica,
Encyclopædia Britannica, inc., 6 June 2016,
http://www.britannica.com/topic/analytic-geometry. Accessed 15 Sept. 2017.

Watson, Richard A. “René Descartes.” Encyclopædia Britannica, Encyclopædia Britannica, inc.,
27 Jan. 2017, http://www.britannica.com/biography/Rene-Descartes. Accessed 15 Sept. 2017.

Engaging students: Factoring polynomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Brittnee Lein. Her topic, from Algebra: factoring polynomials.

green line

1. How can technology be used to effectively engage students with this topic?

There are many great websites that can help to provide students a conceptual framework for factoring polynomials in lieu of simple lecture. This website lets students explore polynomial equations with online algebra tiles.

https://illuminations.nctm.org/activity.aspx?id=3482

Algebra tiles are effective in teaching factoring because they provide a visual representation of abstract concepts and allow students to understand that the symbol “=” in an equation really means equivalence (i.e. what you do to one side of the equation, you must do to the other side). I also think algebra tiles are very beneficial in teaching students about zero pairs. There are other websites –such as wolfram alpha– that are especially great supplements to go alongside topics such as factoring polynomials because students can see the graphical meaning of the roots of a quadratic equation. When combined, these websites can aid students in gaining a both conceptual and procedural understanding of the topic.

 

green line

How could you as a teacher create an activity or project that involves your topic?

There is an activity called “Factor Draft” where students set up a ‘playing field’ of cards. In this field, there are factor cards such as (x+2), (x-12), etc. sum (5x), (12x), etc., and product cards (1), (42), and so on. The goal of the game is to draw a winning hand of two factor cards and a corresponding sum and product card. Each card is color coded to their type. Each turn a player draws one card from the field of face up cards. The player must pay mind to not only his/her own cards but also those of their opponent’s –as the first person to get two factor cards and their corresponding sum and product card wins. This activity is beneficial in furthering student understanding between the relationships between each term in a quadratic polynomial. For example (x+4)(x-3) = x^2 + 1x - 12 and the corresponding factor cards would be (x+4) and (x-3) the sum card would be (1x) and the product card would be (-12). This activity allows students to intuitively get a sense of the process of factoring and gives them practice multiplying out polynomials.

 

 

green line

2. How can this topic be used in your students’ future courses in mathematics or science?
• Factoring polynomials is used in many important future science and mathematics concepts. When a quadratic equation cannot be factored simply, teachers must introduce the quadratic formula. This slides into the introduction of complex roots of an equation and complex numbers. When factoring polynomials of higher degree than 2, synthetic division (another topic in high school mathematics) is useful in finding the roots of the equation. If a student is able to understand the meaning of the roots of an equation, that will aid in solving many interesting physics and mathematics problems. Factoring is used quite often to find the domain of a rational equation such as f(x) = (x+2)/ (x^2+ 4x+3). A student must also have a strong basis in factoring polynomials to learn concepts such as completing the square.

References

• National Library of Virtual Manipulatives, nlvm.usu.edu/en/nav/vlibrary.html.

• Cleveland, James. “The Factor Draft.” The Roots of the Equation, 23 May 2014, rootsoftheequation.wordpress.com/2014/05/22/the-factor-draft/.

Dividing fractions

No automatic alt text available.

Source: https://www.facebook.com/MathWithBadDrawings/photos/a.822582787758549.1073741828.663847933632036/1767946789888806/?type=3&theater

Engaging students: Probability and odds

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Trent Pope. His topic, from Pre-Algebra: probability and odds.

green line

What interesting (i.e., uncontrived) word problems using this topic can your students do now?

This website contains problems that would be great for odds. On the worksheet it has you solving problems about the chances of getting different gumballs from a gumball machine and chances of winning gift cards in a drawing. These worksheets would be great because there are real life applications with these examples. On the worksheet students are to solve what color gumballs they could draw from the machine. This will give them a visual representation of their odds. In order to find their odds they must know all the required information such as the number of total gumballs and the number of each color. Then the instructor can ask the students any question about what they can draw. The other problem is that there are gift cards, coupons, and free admission to a theme park that a student draws from a hat. This would be another great example of how students can find the odds of what they can draw.

http://www.algebra-class.com/odds-and-probability.html

 

green line

How could you as a teacher create an activity or project that involves your topic?

This project idea comes from the game show Deal or No Deal. The purpose of the project would be for students to see what the odds are of winning more money than the amount offered from the Banker. For instance, the banker will offer you $100,000 to leave the show without seeing what is in your briefcase. The contestant would then look to see how many briefcases are left that could contain an amount greater than $100,000. If there are five chances out of the twenty remaining briefcases, the student would have a 5/20 chance, or 25% chance, to win more money. So, the contestant might want to say no deal because there is a higher chance of winning more money should he/she stay in the game. Students could go multiple rounds of this and see if their chances increase as the game goes on. This would engage students and they would look forward to winning the game show.

http://www.teachforever.com/2008/02/lesson-idea-probability-using-deal-or.html

 

green line

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

This topic has appeared in many examples through pop culture. One is in the movie 21. Also, I have found a YouTube video demonstrating probability and odds. The video gives an example of how a game show changes your odds of winning a brand new car. There are three doors and the host asks you which door you think has the new car. When you do this you have a 33% chance of selecting the right door. After you have made a selection, the host goes and selects one of the remaining doors to open. Remember that the host knows which door the car is behind. He opens the door to show you that it does not contain the car. Then, the host asks you if you would like to change your door or keep it. Because of variable change you are more likely to pick the car if you change your decision. This increases your chances to 66% of choosing the right door. I thought this was a great way to engage students about probability and odds because it is all about your chance of selecting the correct door. You have one chance to pick the right door, but three doors to pick from. This is all about odds. It increases after the host opens a door because you have a second chance to select the correct door. This would apply to all game shows, and people would be able to make personal connections.

 

 

Engaging students: Multiplying fractions

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Saundra Francis. Her topic, from Pre-Algebra: multiplying fractions.

green line

How could you as a teacher create an activity or project that involves your topic?

 

This multiplying fractions project found on Teachers Pay Teachers by Mix and Match gets students interested in the topic through creating a dog house. For the project students have to use the size of their chosen dog to discover the dimensions of the doghouse. The students will then scale down their doghouse by multiplying fractions to create a model doghouse. Once the students have discovered the dimensions of the model they can build the model doghouse. There are worksheets provided on the website that will guide the students through this process, the also have word problems related to the doghouse for extra multiplying fractions practice. This project would engage students because they will be able to create their own doghouse and they will be given an opportunity to build it. It also will help students understand how to multiply fractions through working out how it relates to scaling items.

 

green line

How does this topic extend what your students should have learned in previous courses?

 

In previous math course students should have learned how to multiply, reduce fractions to the simplest form, and how to covert mixed numbers to improper fractions. Using these concepts students will be able to multiply fractions based on previous understanding of fractions and multiplication. A YouTube video titled Review of Fraction Concepts created by mathtutordvd (https://www.youtube.com/watch?v=7Wrde6iFVcA) reminds students what a fraction is and what it represents. It also reviews term such as numerator and denominator, which are important terms for students to know when they learn how to multiply fractions. This will engage students’ prior knowledge by giving them a refresher and will prepare them for learning how to multiply fractions. It also might help students that were previously having a hard time understanding the concept of fractions once they watch the video. It also discusses the important of fractions, which will help students realize how it can apply to their daily lives.

green line

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

The Multiplying Fractions Song by NUMBERROCK (https://www.youtube.com/watch?v=CcDGRLosAf0) is an excellent video to engage students and help them understand how to multiply fractions.. This video goes through two examples of multiplying fractions while rapping. The examples used about finding treasure and digging for dinosaur bones will catch students’ attention. The video not only gives student procedural knowledge, the steps to multiply fractions, but explains why we are able to multiply fractions through the images. They sing “multiply the numerator, then multiply the denominator” which students can repeat when they are working on problems later in the lesson. In the video, models are displayed that show students how to multiply using a model, which is part of the TEKS. The diagrams also show students why multiplication of fractions works and gives them a better understanding of the concept. The rap song and cartoon visuals draws students attention and help them remember the topic being learned.

References:

https://www.teacherspayteachers.com/Product/Multiplying-Fractions-Project-2351217

https://www.youtube.com/watch?v=7Wrde6iFVcA

https://www.youtube.com/watch?v=CcDGRLosAf0

Engaging students: Permutations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Sarah McCall. Her topic, from probability: permutations.

green line

What interesting (i.e., uncontrived) word problems using this topic can your students do now?

In high school math, word problems are essentially unavoidable. They can be a pain, but they do help students to be able to see applications of what they are learning as well as good problem solving skills. So, if we must make use of word problems, we might as well make them as engaging/fun as possible. Some examples of ones that I found and would use in my classroom:

  1. Permutation Peter went to the grocery store yesterday and met a super cute girl. He was able to get her phone number (written on the back of his receipt), but today when he went to call her he couldn’t find it anywhere! He knows that it consisted of 7 digits between 0 and 9. Help Permutation Peter by figuring out how many combinations of phone numbers there are.
  2. Every McDonald’s Big Mac consists of 10 layers: 2 patties, 3 buns, lettuce, cheese, onions, special sauce, and pickles. How many different ways are there to arrange a Big Mac?

 

 

green line

How has this topic appeared in pop culture?

Many students are easily confused when they first learn the difference between permutations and combinations, because for most permutations is an unfamiliar concept. One way to show students that they have actually seen permutations before in everyday life is with a Rubik’s cube. To use this in class, I would have students pass around a Rubik’s cube, while I explained that each of the possible arrangements of the Rubik’s cube is a permutation. I would also present to them (and explain) the equation that allows you to find the total number of possibilities (linked below) which yields approximately 43 quintillion permutations. This means it would be virtually impossible for someone to solve it just by randomly turning the faces. Who says you won’t use math in the real world!

green line

 

How can technology be used to effectively engage students with this topic?
In a day and age where a majority of our population is absorbed in technology, I believe that one of the most effective ways to reach high school students is to encourage the constructive use of technology in the classroom instead of fighting it. Khan academy is one of the best resources out there for confusing mathematics topics, because it engages students in a format that is familiar to them (YouTube); not to mention it may be effective for students’ learning to hear a different voice explaining topics other than their normal teacher. In my classroom, I would have my students use their phones, laptops, or tablets to work through khan academy’s permutation videos, examples, and practice problems (link listed below).

References

https://www.quora.com/How-are-permutations-applied-in-real-life

https://prezi.com/q3aaem0k2xie/permutations-in-the-real-world

https://ruwix.com/the-rubiks-cube/mathematics-of-the-rubiks-cube-permutation-group

https://www.khanacademy.org/math/precalculus/prob-comb/combinatorics-precalc/v/permutation-formula

Engaging students: Expressing a rate of change as a percentage

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Peter Buhler. His topic, from Pre-Algebra: expressing a rate of change as a percentage.

green line

How could you as a teacher create an activity or project that involves your topic?

As a teacher, one activity that could be used to engage students would be to use a real world application. This topic is unique, as it can be applied directly to shopping at a store. This activity could include having students bring in a catalog of a sale (either from a grocery store or department store) to the classroom to use. Then students would be encouraged to calculate percent discounts based on markdowns, or they could use a fixed percent discount (ex: 30% off everything) and calculate the new prices of various items from the store.

This activity is not only effective for teaching the topic, but also engages students since this is a topic that everyone deals with on a regular basis. Also, allowing students to bring in catalogs gives the students the freedom to operate within the classroom, as opposed to being given a generic worksheet and asked to solve those problems. An extension of this could be to introduce exponential growth (which is still rate of change and uses percentages) and can be applied to banking, credit, mortgages, and other applications that students may know little about.

 

green line

How can this topic be used in your students’ future courses in mathematics or science?

Although the rate of change and percentages may be introduced at the junior high level, students will continue to use various aspects of these topics even into college level math courses. Derivatives are a huge part of calculus, and it is a known fact that derivatives are simply the rate of change of the original function. On the other hand, percentages can also lead to discussions around probability, chemical compositions within a compound, or even calculating grades for a certain class. All of these deal with using rate of change or percentages in classes outside of pre-algebra.

One application of this could be to introduce derivatives in a class outside of calculus and in a way that students would easily understand. If a student is able to understand the idea behind the rate of change, then they can understand a derivative. Likewise, the teacher can introduce certain applications of percentages outside of mathematics in order to tie in other topics.

 

green line

How can technology be used to effectively engage students with this topic?

As mentioned previously, one method to engage students is through real world applications. Both rate of change and percentages can be found in compound interest. There is a link to a video on YouTube which illustrates how powerful compound interest really can be. The use of graphics and other visuals within the video would allow for student to grasp how large the rate of change is, even after starting with small numbers.

Another useful tool that could be used in the classroom is an online calculator to observe the rate of change. If students have the ability to access the internet, then they could access the URL listed below. The website allows for students to put in different dollar amounts to observe the rate of change in regards to investment. While there is certainly a time to teach students how to calculate this without the website, this could be something that the students use to gain insight into how quickly compound interest can occur. It also gives students the opportunity to observe how different values change the final total and therefore make observations about how compound interest works. The link is: https://www.calculatestuff.com/financial/compound-interest-calculator.

 

 

References:

https://www.youtube.com/watch?v=immQX0RKFY0

https://www.calculatestuff.com/financial/compound-interest-calculator