Source: https://xkcd.com/2286/

## All posts tagged **circle**

# Facts about the 6-foot zone

*Posted by John Quintanilla on August 31, 2020*

https://meangreenmath.com/2020/08/31/facts-about-the-6-foot-zone/

# Engaging students: Finding the equation of a circle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Kelsi Kolbe. Her topic, from Precalculus: finding the equation of a circle.

How can technology be used in order to engage the students on this topic?

A simple Desmos program can be used to see different circles and how the variables affect it. You can write a program on Desmos, where you have to manipulate a given circle to ‘collect all the stars.’ There are stars placed around where the circumference should be. Then the students you a variety of sliders to collect the stars. The sliders can change the radius, and move the circle left to right. I think this simple activity will introduce the parts of a circle equation, like the radius and the center, while the students have fun trying to beat their fellow classmates collect the most stars.

How could you as a teacher create an activity or project that involves your topic?

I think a circle themed “Clue” inspired activity could be fun. I would tell the students that there was a crime committed and the students had to use their math skills to figure out what the crime was, who did it, where they did it, and when they did it. The students would get an ‘investigation sheet’ to record their answers. Each group would start off with a question like, ‘Find the equation of a circle that has the center (2,3) and radius 7’. Each table would have an answer to the math questions that corresponds to a clue to answer one of the ‘who, what, where, where’ questions they are trying to figure out, and prompts the next question. Students would continue this process until one team thinks they have it and shouts “EUREKA!” then they say what they think happened and if they are right they win, if they aren’t we keep going until someone does.

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

Circles are seen in a lot of different Islamic Art. Islamic art is known for its geometrical mosaic art. They had a deep fascination with Euclidean geometry. The circle specifically holds meaning in the Islamic culture. The circle represents unity under a monotheistic God. Their religion is so important it can be seen throughout every aspect of their culture. The repetitiveness also symbolizes god infinite nature. For example, his infinite wisdom and love. Along with circles, the 8-point star is also seen as a very powerful symbol. It represents God’s light spreading over the world. The symbols are very important in the Islamic culture and is shown beautifully in a lot of their art. It’s beautiful how they can pack one art piece with so much geometry and also their beliefs.

*Posted by John Quintanilla on November 16, 2018*

https://meangreenmath.com/2018/11/16/engaging-students-finding-the-equation-of-a-circle-4/

# Engaging students: Radius, Diameter, and Circumference of a Circle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Michelle Contreras. Her topic, from Geometry: radius, diameter, and circumference of a circle.

How could you as a teacher create an activity or project that involves your topic?

A way to relate circumference, radius, and diameter to my student’s real life would be by incorporating an end of unit project where they find 5 circular things that are cool to them in their home. I will ask the students to measure those 5 circular objects and find the radius, diameter, and circumference: rounding to the tens place. The students will also be asked to divided the found circumference by the diameter for every object and estimate the number they find in the hundredths place. The students should keep getting the same estimated number and realize how the estimated number for π was discovered. The students are to label the 5 objects with their radius, diameter, circumference, and to present all their finding to the class including the special number they found when dividing the circumference by the diameter. I would also participate with my students in this project by finding 5 objects around my house and present it to the class as well. There is so much the students can gain by this project, not just mathematically. Students will get an opportunity to show their classmates a little bit about themselves as well as gaining confidence in their perception about their knowledge of this topic.

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Way before William Jones, observations were made regarding the circumference and diameter of a circle. The human race became curious about the circle and made some discoveries; the people saw a relationship between π (pi), the circumference and the radius. The people observed that every time you tried to see how many times the diameter goes into the circumference a similar number was computed. There was talk about the special number being around 22/7 or 355/113 making it seem that the special number was a rational but Jones believed it was an irrational number. Not only Jones but many others before him saw that this special number approached but never quite reached a specific number because it kept going. William Jones introduced the symbol known today for this special number: π in 1706. Though there is a belief by many that Leonhard Euler was the first to introduce and talk about the symbol π, Jones however, published his second book Synopsis Palmanorum Matheseos in 1706 using the symbol π. William Jones was a self-taught mathematician that was born in 1675 that only had a “local charity school education”. Interesting enough Jones was served for the navy before becoming a math teacher. William Jones would charge a fee to those who come to a coffee shop and listen to his lectures in London. Based on the website historytoday.com William Oughtred “used π to represent the circumference of a given circle, so that his π varied according to the circle’s diameter, rather than representing the constant we know today.” The symbol pi is an important irrational number that connects the circumference to the radius and diameter of a circle. There has been many mathematicians who have contributed in some way to this symbol pi regarding circumference.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

YouTube is a great tool to use as a classroom teacher, there are many educational videos that can be beneficial to the student’s education. There are videos that include examples and visuals that your students may or may not relate to. Particularly for the topic regarding circumference and its different features radius and diameter there were many intriguing videos that I came across with. There was one video that I felt I would totally use in one of my lesson about circumference. The video is called “Math Antics: Circles, What is Pi?” I would only show about 3 minutes of the video as an engage at the beginning of the lesson, I really liked however how they explained the definition of a circle with visuals. I believe this video will be very beneficial for my students before starting the unit over the circumference, it also does a very good job at capturing the attention of the audience and explaining pi. I have always believed YouTube to be a great tool for educational purposes but there is a website called mathisfun.com which is my go to for a better explanation or summary of certain concepts. This website gives you really good real world examples that anyone can relate to and great ideas for short engaging activities. The definitions are simplified so any middle school student can understand a concept. The website not only have great examples that you can talk about in your classroom as an engage but also have easy to follow explanations. I would definitely use this website when having trouble explaining, in a simpler form, a certain topic to my students.

References:

“William Jones and his Circle: The Man who invented Pi”. July 2009 http://www.historytoday.com/patricia-rothman/william-jones-and-his-circle-man-who-invented-pi

“Math Antics: Circles, What is Pi?” https://www.youtube.com/watch?v=cC0fZ_lkFpQ

https://www.mathsisfun.com/geometry/circle.html

*Posted by John Quintanilla on October 15, 2018*

https://meangreenmath.com/2018/10/15/engaging-students-radius-diameter-and-circumference-of-a-circle-2/

# Engaging students: The area of a circle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Deetria Bowser. Her topic, from Geometry: the area of a circle.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

An example of a helpful and engaging website for students is aaamath.com. On the left side of the webpage, there are a list of subjects. To find the Area of a circle lesson, select geometry and then area of a circle. The lesson is color coded with green being the “learn” part of the lesson, and blue being the “practice.”In the “learn” part of the lesson it explains briefly how to find the area of a circle. While I believe that and actually lesson should be taught before using this website, I think that the “learn” part provided by this lesson would be a great way to quickly review how to find the area of a circle. The next section (“practice”) gives a radius and the student is expected to calculate the area of the circle using said radius. I think this aspect of the lesson will help students gain speed and accuracy in computing the area of a circle. Although I do not think that this website can be used as a complete lesson on finding the area of a circle, on its own, I do believe that it could serve as a great review tool for students.

How could you as a teacher create an activity or project that involves your topic?

Hands on activities are easier to find for geometry topics, and finding the area of a circle is no exception. An example activity can be found in the YouTube video “Proof Without Words: The Circle.” In this video, the area of a circle is proved using beads and a ruler. The demonstrator creates a circle with silver beads, and shows that the radius of the circle can be measured using the ruler, and the circumference of the circle can be measured by unraveling the outermost part of the circle and measuring it (or by plugging the radius into the equation 2πr). The demonstrator then deconstructs the circle and traces the triangle created by it. From this he shows that . Instead of just using symbols to show this idea, I would create a guided explore activity where the students need to actually measure the radius and circumference of the circle they created as well at the base and height of the triangle created by deconstructing the circle they created. I would ask how the circumference and radius of the circle relate to the base and the height of the triangle. Once students recognize that the base of the triangle correlates with the circumference of the circle, and the radius correlates with the height, it will be easier to see why the area of a circle is calculated using the formula

What interesting (i.e., uncontrived) word problems using this topic can your students do now? (You may find resources such as http://www.spacemath.nasa.gov to be very helpful in this regard; feel free to suggest others.)

Practical uses for finding the area of a circle proved to be quite difficult. For example, most questions contain unrealistic examples such as “making a card with three semi-circles” (Glencoe). Although, many of these impractical exist, I found two example problems that could actually be used in the real world. The first example states “The Cole family owns an above-ground circular

swimming pool that has walls made of aluminum. Find the length of aluminum surrounding the pool as shown if the radius is 15 feet. Round to the nearest tenth” (Glencoe). This example is practical because when constructing a pool, one needs to know the surface area which can be found by using . The final example states “A rug is made up of a quadrant and two semicircles. Find the area of the rug. Use 3.14 for and round to the nearest tenth!” (Glencoe). Although this seems less practical than the pool example, it is still related to real life because finding the area of a rug will help when deciding which rug to choose for a room.

References

M. (2012, May 29). Proof Without Words: The Circle. Retrieved October 06, 2017, from

(n.d.). Retrieved October 06, 2017, from http://www.aaamath.com/geo612x2.htm#pgtp

(n.d.). Retrieved October 06, 2017, from

http://www.glencoe.com/sites/washington/support_student/additional_lessons/Course_1/

584-588_WA_Gr6_AdlLsn_Onln.pdf

*Posted by John Quintanilla on August 31, 2018*

https://meangreenmath.com/2018/08/31/engaging-students-the-area-of-a-circle-2/

# Thanksgiving warning

*Posted by John Quintanilla on November 17, 2017*

https://meangreenmath.com/2017/11/17/thanksgiving-warning/

# Engaging students: Finding the equation of a circle

*engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

This student submission comes from my former student Lucy Grimmett. Her topic, from Precalculus: finding the equation of a circle.

How could you as a teacher create an activity or project that involved your topic?

I love doing activities to teach topics, or solidify students knowledge after direct teaches. The link below describes an activity/project a teacher did with her students. The students were asked to create an image using circles. They can use other images along with circles; however, circles are the main focus of the project. The picture had to include at least four circles. Once they had drawn their image containing the circles they were asked to find the equations of each of the circles in their picture. As an extra challenge students were asked to create a question to go with one of their circles that would aid another student in finding the equation. This is where students have to truly put two-and-two together to create an in depth connection between the lesson, word problems, and furthermore the idea of the center of a circle and the length of the radius.

http://secondarymissrudolph.blogspot.com/2012/04/equations-of-circles-update.html

How does this topic extend what your students should have learned in previous courses?

In Algebra II students learn about writing equations of graphs and how each piece of the equations manipulates the graph. This is a skill that continues into Pre-Calculus. Whether students are graphing circles, exponential functions, or trigonometric equations there is always variables that can be manipulated that manipulate the graph. Further, students will be required to find equations of hyperbolas, ellipses, and parabolas. These equations go hand and hand with one another when students are using a focus and directrix. As you know, mathematics constantly builds on itself. With students previous knowledge of quadratic equations specifically, they see how in the equation , is the “center” of the graph. The same goes for the equation of a circle. The point is the literal center of the circle in the formula . With their previous knowledge of h affecting the x component and k affecting the y, students are able to grasp the concept more quickly, and more efficiently.

How does this topic extend what your students should have learned in previous courses?

In Algebra II students learn about writing equations of graphs and how each piece of the equations manipulates the graph. This is a skill that continues into Pre-Calculus. Whether students are graphing circles, exponential functions, or trigonometric equations there is always variables that can be manipulated that manipulate the graph. Further, students will be required to find equations of hyperbolas, ellipses, and parabolas. These equations go hand and hand with one another when students are using a focus and directrix. As you know, mathematics constantly builds on itself. With students previous knowledge of quadratic equations specifically, they see how in the equation , is the “center” of the graph. The same goes for the equation of a circle. The point is the literal center of the circle in the formula . With their previous knowledge of h affecting the x component and k affecting the y, students are able to grasp the concept more quickly, and more efficiently.

How can be used to effectively engage students with this topic?

There are so many online resources to use for mathematics teaching. Students have easy access to an online graphing calculator called Desmos. This allows students to play with different numbers in equations to see how they affect the graph. For examples, students can manipulate the radius and the center point. This will allow students to visually see how each variable contributes to the equation. Below are other links that are beneficial when teaching equations of circles. Khan Academy is a tool that is used by many educators, not only does Khan Academy include instructional videos, but it also has mini quizzes after that check for student knowledge. The second link below is an online resource which student can insert equations of circles and the program will give them the radius, center, a graph, and it will even give an explanation. There is a second mode on this resource which student put the radius and center and the site will return the equation, again, the website will give an explanation if needed. These resources are quick ways for student to see how the equation of a circle can change different pieces of circles.

http://www.mathportal.org/calculators/analytic-geometry/circle-equation-calculator.php

*Posted by John Quintanilla on July 14, 2017*

https://meangreenmath.com/2017/07/14/engaging-students-finding-the-equation-of-a-circle-3/

# Engaging students: Finding the area of a circle

*engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

This student submission comes from my former student Daniel Herfeldt. His topic, from Geometry: finding the area of a circle.

Learning area of a circle as well as the circumference in geometry is beneficial for anyone who is looking to pursue any career involving math. This includes anything from a math teacher to an architect. This helps with most future courses in mathematics. With this said, it will be very beneficial when going into pre-calculus. This is because in pre-calculus you will deal a lot with trigonometry. This includes such things as the unit circle, which is a great deal to pre-calculus itself. Being familiar with the equations of a circle helps to understand why things work in a unit circle. It can help with simple things such as why x^{2}+y^{2}=r^{2}. Knowing the area of a circle will make the class easier to understand in all. This topic is also very important to future architects. The reason for this is because if an architect doesn’t know the area of a circle or any other shape, it would be very difficult to construct a building. If one cannot figure the dimensions of a pillar to help support the ceiling of a building, the building will have a possibility to collapse. This causes the structure of a building to rely highly on the dimensions, area, and volume of all shapes including the circle. This proves that the importance of the area of a circle to be very high. Most students will not know that everywhere they go, circles are needed. Informing them about these small details could have the students more eager to learn. Giving them great real world examples might also help the students understand and grasp the knowledge that you are trying to teach them because it relates to them.

Circles will be anywhere you go. They are in your everyday TV show, video games, and movies. Although at first glance you might not actually see them, they really are there. When creating a character for an animated movie or a popular video game, artist first start to draw with simple circles and lines. They need to figure out a certain area of the character’s face to be able to fit the facial features. For example, they need to be able to fit eyes, a mouth, a nose and a few more features. From this, they will go on to the animation of the character. This also includes circles because in an animation, when you are wanting to move one object, you have to move it all. The same process applies when working on the landscape properties. It will mostly start with simple lines, circles, and boxes. From there, it will progress into more advance steps, putting more and more detail into it. When moving a character, it is also necessary to move the landscape and surroundings as well. This would be great to tell a class because students will be able to relate to the subject. Most kids in the high school level will play video games. Whether the game is on their phone or a gaming console, they still require the beginning steps. If the student doesn’t play video games, they can relate to it due to watching an animated movie. This will be a great way to engage the class in the first few minutes of class. Below is a picture of the progression of drawing a Pokémon.

Many ancient civilizations have been fascinated with circles. Circles can be seen in many ancient structures and buildings from the Roman Coliseum to Stonehenge.

One ancient civilization fascinated with circles were the Greeks. The believed the circle to be a sacred divine shape mostly based on its multiple points of symmetry. The Greeks also invented a puzzle called squaring the circle, in which the person had to construct a square with the exact area of a circle a compass and a straight edge. This puzzle has been proved mathematically impossible.

Other instances in which circles played an important role in history were the circles that appeared in the crops in different areas of the world. These crop circles have been argued to be a hoax while others indicate it is not possible for the crop circles to be the work of humans. Regardless, of their origin, these crop circles continue to fascinate us.

Circles continue to have significance today. They are used in logos and other things usually to signify unity and harmony. Even the Olympic symbol is made up of five interlocking colorful rings. The circle is still found today enclosing the all seeing eye over the pyramid in the dollar bill on the US currency.

The significance of presenting this information to students, especially high school students, is to give them background information. I think many high schoolers will be interested to learn how circles have been significant in other cultures throughout history. Students can be given a short introduction in the subject and asked to look for more instances in which circles played a role in an ancient civilization and then bring that trajectory to modern times.

Website: https://nrich.maths.org/2561

*Posted by John Quintanilla on May 30, 2017*

https://meangreenmath.com/2017/05/30/engaging-students-finding-the-area-of-a-circle-4/

# My Favorite One-Liners: Part 88

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

In the first few weeks of my calculus class, after introducing the definition of a derivative,

,

I’ll use the following steps to guide my students to find the derivatives of polynomials.

- If , a constant, then .
- If and are both differentiable, then .
- If is differentiable and is a constant, then .
- If , where is a nonnegative integer, then .
- If is a polynomial, then .

After doing a few examples to help these concepts sink in, I’ll show the following two examples with about 3-4 minutes left in class.

Example 1. Let . Notice I’ve changed the variable from to , but that’s OK. Does this remind you of anything? (Students answer: the area of a circle.)What’s the derivative? Remember, is just a constant. So .

Does this remind you of anything? (

Students answer: Whoa… the circumference of a circle.)

Generally, students start waking up even though it’s near the end of class. I continue:

Example 2. Now let’s try . Does this remind you of anything? (Students answer: the volume of a sphere.)What’s the derivative? Again, is just a constant. So .

Does this remind you of anything? (

Students answer: Whoa… the surface area of a sphere.)

By now, I’ve really got my students’ attention with this unexpected connection between these formulas from high school geometry. If I’ve timed things right, I’ll say the following with about 30-60 seconds left in class:

Hmmm. That’s interesting. The derivative of the area of a circle is the circumference of the circle, and the derivative of the area of a sphere is the surface area of the sphere. I wonder why this works. Any ideas? (

Students: stunned silence.)This is what’s known as a cliff-hanger, and I’ll give you the answer at the start of class tomorrow. (

Students groan, as they really want to know the answer immediately.) Class is dismissed.

If you’d like to see the answer, see my previous post on this topic.

*Posted by John Quintanilla on April 29, 2017*

https://meangreenmath.com/2017/04/29/my-favorite-one-liners-part-88/

# Math Maps The Island of Utopia

Under the category of “Somebody Had To Figure It Out,” Dr. Andrew Simoson of King University (Bristol, Tennessee) used calculus to determine the shape of the island of Utopia in the 500-year-old book by Sir Thomas More based on the description of island given in the book’s introduction.

News article: https://www.insidescience.org/news/math-maps-island-thomas-mores-utopia

Paper by Dr. Simoson: http://archive.bridgesmathart.org/2016/bridges2016-65.html

*Posted by John Quintanilla on September 30, 2016*

https://meangreenmath.com/2016/09/30/math-maps-the-island-of-utopia/

# Look at my tan line

*Posted by John Quintanilla on September 26, 2016*

https://meangreenmath.com/2016/09/26/look-at-my-tan-line/