Engaging students: Solving one-step algebra problems

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Alizee Garcia. Her topic, from Algebra: solving one-step algebra problems.

green line

How can this topic be used in your students’ future courses in mathematics or science?

As stated in the topic, one-step algebra problems can also lead up to two-step, three-step, and so on and so forth. Being said, as students’ move on to future courses, the knowledge they have over one-step problems is what will get them through more complex equations. Throughout algebra courses, the basis of problems will be to solve an unknown variable. Without the understanding of the base of algebra, things will not be smooth. Also, solving one-step algebra problems will help students’ even in science classes. For example, chemistry classes contain a lot of variables and unknowns and it is up to the student to solve for them. The amount of solution a student has to put into another solution may need to be figured out by a simple one-step algebra problem and without this knowledge, it can lead to a ruined lab or maybe even an explosion. Solving one-step problems and understanding how to will help students tremendously from the time they learn it to the end of time.

green line

How does this topic extend what your students should have learned in previous courses?

When solving any algebra problem, or solving for an unknown, it allows students to incorporate order of operations. As for just one-step algebra problems, it gives students the opportunity to practice addition, subtraction, multiplication, and division. It also gives them to opportunity to practice setting up an equation when solving for the unknown. There are many things that one-step algebra problems extends for students but as they have more practice, they should not have to think about it much. Furthermore, when solving algebra problems one of the most important things is doing the same application on both sides of the equality. Sometimes students may have done one-step algebra problems in the past but have not set it up in an equation. This also will extend the topic of addition, subtraction, multiplication, and division. Although the students may already have a lot of experience with those applications, it gives them more practice to decide what application to use when solving a one-step algebra problem.

green line

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?      

Recently, I have discovered that when appropriate, using websites such as Quizziz, Kahoot, and online games as such helps students engage in the topic. Especially for one-step algebra problems that can be done mentally or quickly on paper, it lets students become more active in the lesson. Students will want to be their peers high score and get the questions right. Using such technology will enable students to have more practice and wanting to do it correctly as well. Making topics a friendly competition for students will make things more exciting for them. Also, these website will allow for an untimed quiz so they do not feel rush and are able to accurately solve problems. Although this can be tricky for some math topics, with simpler things such as one-step algebra problems, it definitely will be a very good opportunity for students to learn material and have fun with it as well.

My Favorite One-Liners: Part 122

Once in my probability class, a student asked a reasonable question — could I intuitively explain the difference between “uncorrelated” and “independent”? This is a very subtle question, as there are non-intuitive examples of random variables that are uncorrelated but are nevertheless dependent. For example, if X is a random variable uniformly distributed on \{-1,0,1\} and Y= X^2, then it’s straightforward to show that E(X) = 0 and E(XY) = E(X^3) = E(X) = 0, so that

\hbox{Cov}(X,Y) = E(XY) - E(X) E(Y) = 0

and hence X and Y are uncorrelated.

However, in most practical examples that come up in real life, “uncorrelated” and “independent” are synonymous, including the important special case of a bivariate normal distribution.

This was my expert answer to my student: it’s like the difference between “mostly dead” and “all dead.”

A line joining two infinitely small points

Been there, done that.

Source: Math With Bad Drawings, https://www.facebook.com/MathWithBadDrawings/photos/a.822582787758549/3862434577106673/

Mathematics is about wonder, creativity and fun, so let’s teach it that way

I enjoyed this opinion piece at phys.org about project-based instruction in mathematics. A sample quote:

Mathematician Jo Boaler from the Stanford Graduate School of Education says that a “wide gulf between real mathematics and school mathematics is at the heart of the math problems we face in school education.”

Of the subject of mathematics, Boaler notes that: “Students will typically say it is a subject of calculations, procedures, or rules. But when we ask mathematicians what math is, they will say it is the study of patterns that is an aesthetic, creative, and beautiful subject. Why are these descriptions so different?”

She points out the same gulf isn’t seen if people ask students and English-literature professors what literature is about.

In the process of constructing the RabbitMath curriculum, problems or activities are included when team members find them engaging and a challenge to their intellect and imagination. Following the analogy with literature, we call the models we are working with mathematical novels.


A Professor Asked His Students to Write Their Own Exam Questions

I was intrigued by this article in the Chronicle of Higher Education about professors who asked students to write their own exam questions, thus forming a test bank from which the actual exam would be constructed. I’m not sure if I’d try this myself, but it definitely gave me food for thought.

Visualizing Vectors

From the Math Values blog of the Mathematical Association of America:

Anyone who has taught linear algebra knows how easy it is for students to get absorbed in performing matrix computations and memorizing theorems, losing the beauty of the structures in this foundational subject. James Factor and Susan Pustejovsky of Alverno College in Milwaukee, WI, bring back the visual beauty of linear algebra through their NSF-funded project Transforming Linear Algebra Education with GeoGebra Applets.

The applets are freely available in the GeoGebra book Transforming Linear Algebra Education https://www.geogebra.org/m/XnfUWvvp. Each topic is packaged with a video to show how the applets work, the applet, and learning activities.

Read more about it here: https://www.mathvalues.org/masterblog/visualizing-vectors

Using Rubik’s Cubes to Teach Math

I enjoyed this opinion piece about creative ways to use a Rubik’s cube to engage reluctant students in a mathematics class.

As an added bonus, the article provides a link to You Can Do The Cube, which includes complex mosaics that can be built by arranging one side of multiple Rubik’s cubes, suggesting this as a strategy for getting children hooked on Rubik’s cubes (instead of frustrating novices with the complex task of solving the cube completely).

Expert mathematicians stumped by simple subtractions

This was an interesting psychological article about how the phrasing of a word problem — in particular, adding extra information that has no bearing on the solution — can affect its perception of difficulty. Money quote:

“Sarah has 14 animals: cats and dogs. Mehdi has two cats fewer than Sarah, and as many dogs. How many animals does Mehdi have?”…

“[I]n the problem with animals, we look to calculate the number of dogs that Sarah has, which is impossible, whereas the calculation 14-2 = 12 provides the solution directly,” explains Jean-Pierre Thibaut, a researcher at the University of Bourgogne Franche-Comté. …

“One out of four times, the [professional mathematicians] thought there was no solution to the problem, even though it was of primary school level. And we even showed that the participants who found the solution to the set problems were still influenced by their set-based outlook, because they were slower to solve these problems than the axis problems,” says Gros.

The results highlight the critical impact that knowledge about the world has on the ability to use mathematical reasoning. They show that it is not easy to change perspective when solving a problem. Thus, the researchers argue that teachers need to take this bias into account in math education.

“We see that the way a mathematical problem is formulated has a real impact on performance, including that of experts, and it follows that we can’t reason in a totally abstract manner,” says professor Sander. Educational initiatives are required based on methods that help pupils learn about mathematical abstraction. “We have to detach ourselves from our non-mathematical intuition by working with students in non-intuitive contexts,” concludes Gros.


Learning Math by Seeing It as a Story

I enjoyed this first-person piece about an English teacher who, by grim necessity, found herself thrust in the uncomfortable situation of co-teaching trigonometry and used her training as an English teacher to better engage her students.

Some quotes:

My students struggled with the calculations, thinking they just weren’t good at math. Like me, they hated it. What was the point in working and reworking these calculations? What were we trying to figure out anyway? And I originally agreed with them.

Yet trig slowly became my favorite class of the day. After spending years teaching English and reading, I was being challenged to move beyond what I had always been doing. When you’re new to something, you have a fresh perspective. You’re willing to take risks. You’re willing to try anything because you don’t know how something should be done.


I brought in some books from Chris Ferrie’s Baby University series—books like General Relativity for Babies and Optical Physics for Babies. The idea is that you don’t fully know something unless you can break it down so simply that you can explain it to a young child.

That’s the task I gave my students. We started by reading Ferrie’s board books to see how simple language and illustrations could be used to explain complex subjects. Next, students chose a multistep equation they had initially struggled with. Working in pairs or small groups, they talked through their thinking and the steps needed to solve the equation. Their partners were encouraged to ask questions and get clarification so the ideas were explained at the simplest level.


I used story problems as an opportunity to connect math to students’ lives by creating fictional math-based stories. First, students would work in small groups to go through the chapter in their math textbook and collect the story problems, writing them on index cards. Next, students would lay out the cards to see the questions as a whole: Out of 10 or more story problems in the chapter, were there five similar ones they could group together? What problem-solving skills were called for to work on these problems?

When they used creative writing skills to develop math story problems about things they were interested in, students became more engaged. They wanted to read the other groups’ stories and work on the math in them because they had a real investment in the outcome. The stories helped students find motivation because they created an answer to the question “Why do we need to learn this?”


Veteran teacher shows how achievement gaps in STEM classes can be eliminated

This press release from UC Santa Cruz definitely gave me food for thought about new things to try in my own classes. A few short snippets:

[Professor Tracy Larrabee] uses a three-pronged approach to support underrepresented students in her class.

“The first is that we have had a very diverse teaching staff,” she said. “We have one professor, four TAs and four MSI tutors, and during this time it just happened that of those people, half were female, we always had at least one African American, one Latinx, and one non-gender conforming tutor so that everyone could feel a connection to someone on the teaching staff.”

“Another technique I use is to emphasize failure as the appropriate path to learning,” she said. “Engineering is hard; it’s good to fail the first time you attempt a problem. People who fail at a problem the first time tend to retain things better than those who luck into the right answer.”

Her final tactic is to explicitly discuss stereotype threat. This is the risk that someone (i.e., from an underrepresented minority) might take routine negative experiences as confirmation that they are fundamentally unsuited for something like higher education.

“One of my African American MSI tutors—who are extremely high achieving students selected to provide supplemental tutoring to others—told me it was like having a light bulb go off for him,” Larrabee said. ”Until I discussed the issue in class, he felt like he didn’t belong in this major, but after we talked about stereotypes, he realized it wasn’t that he was unsuited for the material. It was hard for everyone!”