My Favorite One-Liners: Part 108

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Today’s post marks the final entry in this series. When I first came up with the idea of listing some of favorite classroom quips, I thought that this series might last a couple dozen posts. To my surprise, it instead lasted for more than 100 posts. I guess that, in my 21-year teaching career, I’ve slowly developed my own unique lexicon for communicating mathematical ideas, and perhaps this parallels (on a decidedly smaller scale) what a radio talk show host (like local legend Randy Galloway, who was a sports reporter/commentator in the Dallas/Fort Worth area for many years before retiring) does to build rapport with his/her audience.

I’ll use this final one-liner near the end of the semester when it’s time for students complete their evaluations of my teaching. Back in days of yore, professors would take 10-15 minutes to pass out paper copies of these evaluations, students would complete them, and that would be the end of it. In modern times, however, paper evaluations have switched to electronic evaluations, which are perhaps better for the environment but tend to have a decidedly lower response rate than the old paper evaluations. Still, I value my students’ feedback. So I’ll tell them:

Please fill out the student evaluation; the size of my raise depends on this.

After the laughter settles down, I’ll tell them, “Who’s joking?” I can’t say this happens everywhere, but I can honestly say that my department’s executive committee does consider student evaluations of teaching when deciding on the quality of my teaching, and that partially determines the size of my annual merit raise. (The committee also considers other indicators of good teaching other than student evaluations.)

It’s important to note that I don’t tell my students to give me a good evaluation; I just ask them to fill it out and to be honest with their feedback. I also tell them, forgetting my raise, I also want to hear from them about how the semester went. If it went great, I want to know that. If it sucked, I also want to know that. However, if they think the class sucked, just writing “This class sucked” doesn’t give me a lot of information about how to fix things for the next time that I teach the course. So, if they have a criticism, I ask them to give me specific feedback so that I can consider their critiques.

A couple years ago, I served on my university’s committee for reconsidering the way that we conduct student evaluations of teaching. To my surprise, when I interviewed students in focus groups, there was a general consensus that students believed that their evaluations were a waste of time that didn’t actually contribute anything to the university — or if they did contribute something, they had no idea what it was. Ever since then, I’ve made a point of telling my students that their evaluations really do matter and can make a difference in future offerings of my courses.

My Favorite One-Liners: Part 107

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

When students ask me how long it will take me to grade their exam, I’ll describe my tongue-in-cheek process for grading… I’ll go home, pop on the TV, and watch some movie that gets me in the proper mood for grading exams… perhaps Braveheart… or Gladiator… or The Godfather

My Favorite One-Liners: Part 106

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Years ago, when I first taught Precalculus at the college level, I was starting a section on trigonometry by reminding my students of the acronym SOHCAHTOA for keeping the trig functions straight:

\sin \theta = \displaystyle \frac{\hbox{Opposite}}{\hbox{Hypotenuse}},

\cos \theta = \displaystyle \frac{\hbox{Adjacent}}{\hbox{Hypotenuse}},

\tan \theta = \displaystyle \frac{\hbox{Opposite}}{\hbox{Adjacent}}.

At this point, one of my students volunteered that a previous math teacher had taught her an acrostic to keep these straight: Some Old Hippie Caught Another Hippie Tripping On Acid.

Needless to say, I’ve been passing this pearl of wisdom on to my students ever since.

My Favorite One-Liners: Part 105

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Today’s quip was happily stolen from a former student:

If someone you like is sending you mixed signals, use a Fourier transform.

Not surprisingly, a quick Google search turned up the relevant memes:

My Favorite One-Liners: Part 104

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

I use today’s quip when discussing the Taylor series expansions for sine and/or cosine:

\sin x = x - \displaystyle \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots

\cos x = 1 - \displaystyle \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots

To try to convince students that these intimidating formulas are indeed correct, I’ll ask them to pull out their calculators and compute the first three terms of the above expansion for $x=0.2$, and then compute \sin 0.2. The results:

This generates a pretty predictable reaction, “Whoa; it actually works!” Of course, this shouldn’t be a surprise; calculators actually use the Taylor series expansion (and a few trig identity tricks) when calculating sines and cosines. So, I’ll tell my class,

It’s not like your calculator draws a right triangle, takes out a ruler to measure the lengths of the opposite side and the hypotenuse, and divides to find the sine of an angle.

 

My Favorite One-Liners: Part 103

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

I’ll use today’s one-liner to give students my expectations about simplifying incredibly complicated answers. For example,

Find f'(x) if f(x) = \displaystyle \frac{\sqrt{x} \csc^5 (\sqrt{x} )}{x^2+1}.

Using the rules for differentiation,

f(x) = \displaystyle \frac{[\sqrt{x} \csc^5 (\sqrt{x} )]'(x^2+1) -[\sqrt{x} \csc^5 (\sqrt{x} )](x^2+1)' }{(x^2+1)^2}

= \displaystyle \frac{[(\sqrt{x})' \csc^5 (\sqrt{x} ) + \sqrt{x} (\csc^5(\sqrt{x}))'](x^2+1) - \sqrt{x} \csc^5 (\sqrt{x} )](2x) }{(x^2+1)^2}

= \displaystyle \frac{[\frac{1}{2\sqrt{x}} \csc^5 (\sqrt{x} ) + 5 \sqrt{x}  \csc^4(\sqrt{x}) [-\csc(\sqrt{x})\cot(\sqrt{x})]\frac{1}{2\sqrt{x}}(x^2+1) - \sqrt{x} \csc^5 (\sqrt{x} )](2x) }{(x^2+1)^2}

With some effort, this simplifies somewhat:

f'(x) = -\displaystyle \frac{\left(5 x^{5/2} \cot \left(\sqrt{x}\right)+3 x^2+5 \sqrt{x} \cot \left(\sqrt{x}\right)-1\right) \csc ^5\left(\sqrt{x}\right)}{2 \sqrt{x} \left(x^2+1\right)^2}

Still, the answer is undeniably ugly, and students have been well-trained by their previous mathematical education to think the final answers are never that messy. So, if they want to try to simplify it further, I’ll give them this piece of wisdom:

You can lipstick on a pig, but it remains a pig.

My Favorite One-Liners: Part 102

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

I’ll use today’s one-liner when the final answer is a hideous mess. For example,

Find f'(x) if f(x) = \displaystyle \frac{\sqrt{x} \csc^5 (\sqrt{x} )}{x^2+1}.

The answer isn’t pretty:

f'(x) = -\displaystyle \frac{\left(5 x^{5/2} \cot \left(\sqrt{x}\right)+3 x^2+5 \sqrt{x} \cot \left(\sqrt{x}\right)-1\right) \csc ^5\left(\sqrt{x}\right)}{2 \sqrt{x} \left(x^2+1\right)^2}

This leads to the only possible response:

As all the King’s horses and all the King’s men said when discovering Humpty Dumpty… yuck.

My Favorite One-Liners: Part 101

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

I’ll use today’s one-liner when a choice has to be made between two different techniques of approximately equal difficulty. For example:

Calculate \displaystyle \iint_R e^{-x-2y}, where R is the region \{(x,y): 0 \le x \le y < \infty \}

There are two reasonable options for calculating this double integral.

  • Option #1: Integrate with respect to x first:

\int_0^\infty \int_0^y e^{-x-2y} dx dy

  • Option #2: Integrate with respect to y first:

\int_0^\infty \int_x^\infty e^{-x-2y} dy dx

Both techniques require about the same amount of effort before getting the final answer. So which technique should we choose? Well, as the instructor, I realize that it really doesn’t matter, so I’ll throw it open for a student vote by asking my class:

Anyone ever read the Choose Your Own Adventure books when you were kids?

After the class decides which technique to use, then we’ll set off on the adventure of computing the double integral.

This quip also works well when finding the volume of a solid of revolution. We teach our students two different techniques for finding such volumes: disks/washers and cylindrical shells. If it’s a toss-up as to which technique is best, I’ll let the class vote as to which technique to use before computing the volume.

My Favorite One-Liners: Part 100

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Today’s quip is one that I’ll use surprisingly often:

If you ever meet a mathematician at a bar, ask him or her, “What is your favorite application of the Cauchy-Schwartz inequality?”

The point is that the Cauchy-Schwartz inequality arises surprisingly often in the undergraduate mathematics curriculum, and so I make a point to highlight it when I use it. For example, off the top of my head:

1. In trigonometry, the Cauchy-Schwartz inequality states that

|{\bf u} \cdot {\bf v}| \le \; \parallel \!\! {\bf u} \!\! \parallel \cdot \parallel \!\! {\bf v} \!\! \parallel

for all vectors {\bf u} and {\bf v}. Consequently,

-1 \le \displaystyle \frac{ {\bf u} \cdot {\bf v} } {\parallel \!\! {\bf u} \!\! \parallel \cdot \parallel \!\! {\bf v} \!\! \parallel} \le 1,

which means that the angle

\theta = \cos^{-1} \left( \displaystyle \frac{ {\bf u} \cdot {\bf v} } {\parallel \!\! {\bf u} \!\! \parallel \cdot \parallel \!\! {\bf v} \!\! \parallel} \right)

is defined. This is the measure of the angle between the two vectors {\bf u} and {\bf v}.

2. In probability and statistics, the standard deviation of a random variable X is defined as

\hbox{SD}(X) = \sqrt{E(X^2) - [E(X)]^2}.

The Cauchy-Schwartz inequality assures that the quantity under the square root is nonnegative, so that the standard deviation is actually defined. Also, the Cauchy-Schwartz inequality can be used to show that \hbox{SD}(X) = 0 implies that X is a constant almost surely.

3. Also in probability and statistics, the correlation between two random variables X and Y must satisfy

-1 \le \hbox{Corr}(X,Y) \le 1.

Furthermore, if \hbox{Corr}(X,Y)=1, then Y= aX +b for some constants a and b, where a > 0. On the other hand, if \hbox{Corr}(X,Y)=-1, if \hbox{Corr}(X,Y)=1, then Y= aX +b for some constants a and b, where a < 0.

Since I’m a mathematician, I guess my favorite application of the Cauchy-Schwartz inequality appears in my first professional article, where the inequality was used to confirm some new bounds that I derived with my graduate adviser.

My Favorite One-Liners: Part 99

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Today’s quip is a light-hearted one-liner that I’ll use to lighten the mood when in the middle of a complex calculation, like the following limit problem from calculus:

Let f(x) = 11-4x. Find \delta so that |f(x) - 3| < \epsilon whenever $|x-2| < \delta$.

The solution of this problem requires isolating x in the above inequality:

|(11-4x) - 3| < \epsilon

|8-4x| < \epsilon

-\epsilon < 8 - 4x < \epsilon

-8-\epsilon < -4x < -8 + \epsilon

At this point, the next step is dividing by -4. So, I’ll ask my class,

When we divide by -4, what happens to the crocodiles?

This usually gets the desired laugh out of the middle-school rule about how the insatiable “crocodiles” of an inequality always point to the larger quantity, leading to the next step:

2 + \displaystyle \frac{\epsilon}{4} > x > 2 - \displaystyle \frac{\epsilon}{4},

so that

\delta = \min \left( \left[ 2 + \displaystyle \frac{\epsilon}{4} \right] - 2, 2 - \left[2 - \displaystyle \frac{\epsilon}{4} \right] \right) = \displaystyle \frac{\epsilon}{4}.

Formally completing the proof requires starting with |x-2| < \displaystyle \frac{\epsilon}{4} and ending with |f(x) - 3| < \epsilon.