# My Favorite One-Liners: Part 113

I tried a new wisecrack when teaching my students about Euler’s formula. It worked gloriously.

# My Favorite One-Liners: Part 112

This was also the story of my childhood.

# Euler’s Equation

This was hands-down my favorite variant of the “distracted boyfriend” meme that went around the internet last year.

# My Favorite One-Liners: Part 86

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

To get students comfortable with $i = \sqrt{-1}$, I’ll often work through a quick exercise on the powers of $i$:

$i^1 = i$

$i^2 = -1$

$i^3 = -i$

$i^4 = 1$

$i^5 = i$

Students quickly see that the powers of $i$ are a cycle of length 4, so that $i^5 = i \cdot i \cdot i \cdot i \cdot i$ is the same thing as just $i$. So I tell my students:

There’s a technical term for this phenomenon: aye-yai-yai-yai-yai.

# My Favorite One-Liners: Part 82

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

In differential equations, we teach our students that to solve a homogeneous differential equation with constant coefficients, such as

$y'''+y''+3y'-5y = 0$,

the first step is to construct the characteristic equation

$r^3 + r^2 + 3r - 5 = 0$

by essentially replacing $y'$ with $r$, $y''$ with $r^2$, and so on. Standard techniques from Algebra II/Precalculus, like the rational root test and synthetic division, are then used to find the roots of this polynomial; in this case, the roots are $r=1$ and $r = -1\pm 2i$. Therefore, switching back to the realm of differential equations, the general solution of the differential equation is

$y(t) = c_1 e^{t} + c_2 e^{-t} \cos 2t + c_3 e^{-t} \sin 2t$.

As $t \to \infty$, this general solution blows up (unless, by some miracle, $c_1 = 0$). The last two terms decay to 0, but the first term dominates.

The moral of the story is: if any of the roots have a positive real part, then the solution will blow up to $\infty$ or $-\infty$. On the other hand, if all of the roots have a negative real part, then the solution will decay to 0 as $t \to \infty$.

This sets up the following awful math pun, which I first saw in the book Absolute Zero Gravity:

An Aeroflot plan en route to Warsaw ran into heavy turbulence and was in danger of crashing. In desparation, the pilot got on the intercom and asked, “Would everyone with a Polish passport please move to the left side of the aircraft.” The passengers changed seats, and the turbulence ended. Why? The pilot achieved stability by putting all the Poles in the left half-plane.

# My Favorite One-Liners: Part 67

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Here are a couple of similar problems that arise in Precalculus:

1. Convert the point $(5,-5)$ from Cartesian coordinates into polar coordinates.
2. Convert the complex number $5 - 5i$ into trigonometric form.

For both problems, a point is identified that is 5 steps to the right of the origin and then 5 steps below the $x-$axis (or real axis). To make this more kinesthetic, I’ll actually walk 5 paces in front of the classroom, turn right face, and then walk 5 more paces to end up at the point.

I then ask my class, “Is there a faster way to get to this point?” Naturally, they answer: Just walk straight to the point. After some work with the trigonometry, we’ll establish that

1. $(5,-5)$ in Cartesian coordinates is equivalent to $(5\sqrt{2}, -\pi/4)$ in polar coordinates, or
2. $5-5i$ can be rewritten as $5\sqrt{2} [ \cos(-\pi/4) + i \sin (-\pi/4)]$ in trigonometric form.

Once this is obtained, I’ll walk it out: I’ll start at the origin, turn clockwise by 45 degrees, and then take $5\sqrt{2} \approx 7$ steps to end up at the same point as before.

Continuing the lesson, I’ll ask if the numbers $5\sqrt{2}$ and $-\pi/4$, or if some other angle and/or distance could have been chosen. Someone will usually suggest a different angle, like $7\pi/4$ or $15\pi/4$. I’ll demonstrate these by turning 315 degrees counterclockwise and walking 7 steps and then turning 675 degrees and walking 7 steps (getting myself somewhat dizzy in the process).

Finally, I’ll suggest turning only 135 degrees clockwise and then taking 7 steps backwards. Naturally, when I do this, I’ll do a poor man’s version of the moonwalk:

# My Favorite One-Liners: Part 59

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Often I’ll cover a topic in class that students really should have learned in a previous class but just didn’t. For example, in my experience, a significant fraction of my senior math majors have significant gaps in their backgrounds from Precalculus:

• About a third have no memory of ever learning the Rational Root Test.
• About a third have no memory of ever learning synthetic division.
• About half have no memory of ever learning Descartes’ Rule of Signs.
• Almost none have learned the Conjugate Root Theorem.

Often, these students will feel somewhat crestfallen about these gaps in their background knowledge… they’re about to graduate from college with a degree in mathematics and are now discovering that they’re missing some pretty basic things that they really should have learned in high school. And I don’t want them to feel crestfallen. Certainly, these gaps need to be addressed, but I don’t want them to feel discouraged.

Hence one of my favorite motivational one-liners:

It’s not your fault if you don’t know what you’ve never been taught.

I think this strikes the appropriate balance between acknowledging that there’s a gap that needs to be addressed and assuring the students that I don’t think they’re stupid for having this gap.

# My Favorite One-Liners: Part 54

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

The complex plane is typically used to visually represent complex numbers. (There’s also the Riemann sphere, but I won’t go into that here.) The complex plane looks just like an ordinary Cartesian plane, except the “$x-$axis” becomes the real axis and the “$y-$axis” becomes the imaginary axis. It makes sense that this visualization has two dimensions since there are two independent components of complex numbers. For real numbers, only a one-dimensional visualization is needed: the number line that (hopefully) has been hammered into my students’ brains ever since elementary school.

While I’m on the topic, it’s unfortunate that “complex numbers” are called complex, as this often has the connotation of difficult. However, that’s not why our ancestors chose the word complex was chosen. Even today, there is a second meaning of the word: a group of associated buildings in close proximity to each other is often called an “apartment complex” or an “office complex.” This is the real meaning of “complex numbers,” since the real and imaginary parts are joined to make a new number.

When I teach my students about complex number, I tell the following true story of when my daughter was just a baby, and I was extremely sleep-deprived and extremely desperate for ways to get her to sleep at night.

I tried counting monotonously, moving my finger to the right on a number line with each number:

$1, 2, 3, 4, ...$

That didn’t work, so I tried counting monotonously again, but this time moving my finger to the left on a number line with each number:

$-1, -2, -3, -4, ...$

That didn’t work either, so I tried counting monotonously once more, this time moving my finger up the imaginary axis:

$i, 2i, 3i, 4i...$

For the record, that didn’t work either. But it gave a great story to tell my students.