Large number formats

A great explanation of the comic can be found at https://www.explainxkcd.com/wiki/index.php/2319:_Large_Number_Formats.

Engaging students: Using the point-slope equation of a line

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Johnny Aviles. His topic, from Algebra: using the point-slope equation of a line.

green line

 

A2 How could you as a teacher create an activity or project that involves your topic?

On the 1987 NBA Dunk Contest, Michael Jordan won by dunking all the way from the free throw line. (I will play them a clip). Now can anyone tell me how high the hoop is from the ground? And how far is the free throw line from the base of the hoop? So, in total he went 10 feet in the air while jumping 15 feet! This is incredibly difficult and was why he won the contest. Now lets just compute that slope. With rise/ run we get that the slope was 2/3. Another example I can use is the time I took to get to school. I live 30 miles away and it took me 40 minutes to get to school. would anyone be able to find the average speed? (45 MPH) Then I will make it more complex and say I went 60 miles an hour for the first 20 minutes, how fast was I going the last 20 minutes?(30 MPH) Then I will have a round robin activity where I will give 5 min for my students to discuss amongst their groups where they can create a scenario where they can use point-slope equation of a line.

green line

C3 How has this topic appeared in the news?

We all have many factors that interest us and the news’ job is to keep us updated. For many people, the stock market is a very serious subject of interest. Everything is shown in charts and done on points and percentages for simplicity reasons. This uses the concept of point-slope equation of a line to create this data. The news also covers may other topics like the rise of current temperature from given years to see if factors like global warming may have played a role to create the next leading story. The data from previous years can create point-slope equation that can predict the rain and snow fall amount for a given city or town. The weather initially can use point-slope equation of a line to predict all factors all data collected over decades. There is a copious amount of data that the news has to be used in all aspects of the news, one that has been shown is the rise of mass shootings. This is a very controversial matter as many people seek reform of the second amendment. Overall, point-slope equation of a line is widely used in many platforms of our news programs.

 

 

green line

D4 What are the contributions of various cultures to this topic?

Architecture has been the biggest contribution that point-slope equation of a line and has to be applied. Various cultures have their own specific style of how they have their cities, towns and neighborhoods but all will apply the basics of point-slope equation of a line. For example, when creating a building, they use materials with large mass and need to be supported. If the slope of a beam is even slightly off, it can generally cause the building to collapse under its own weight causing the lives of many. Every aspect of the building needs to be measured in a precise way to create a solid structure. Styles then range from all cultures and can have tilted and rounded with elaborate beams to add more diversity. Overall, all cultures have their own specific style of houses that all require the same point-slope equation of a lines that contributes them to remain standing.

 

 

 

Engaging students: Graphing parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Cody Luttrell. His topic, from Algebra: graphing parabolas.

green line

How can this topic be applied in your students’ future courses in mathematics or science?

Understanding the graph of a parabola will be very important in an Algebra 1 students future math and science classes. When a student enters Algebra II, they will be dealing with more complicated uses dealing with quadratic functions. An example would be complex numbers. When dealing with a parabola that does not cross the x-axis, you will end up with an imaginary solution, but if the student does not understand the graph of a parabola they may not understand this topic. When the student reaches pre-calculus, understanding the transformations of a parabola will aid when dealing with transformations of other functions such as cubic, square root, and absolute value.
Understanding the graph of a parabola will benefit a student in Physics when they deal with equations of projectiles. Knowing that there is symmetry in a parabola can aid in knowing the position of the projectile at a certain time if they know the time the projectile is at its maximum height.

 

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

The shape of the parabola is used constantly in art and even architecture. A quick engage that I can have for the students would be a powerpoint of photos of parabolas in the real world. Examples would include arches in bridges, roller coasters, water fountains, etc. Ideally, I would want my students to see the pattern that I am getting at and see the parabola in all of these objects. I could then ask the students to brainstorm where else they can find this shape. I would expect to hear answers such as the St. Louis Arch, the sign at McDonalds, or even a rainbow.
After learning about quadratics, we could come back to the topic of architecture and parabolas. After they have learned about the transformations of parabolas, we can discuss how to make arch longer or shorter in bridges(if it follows the parabolic shape). We could also discuss how if we wanted to make a bridge taller, how it would affect the distance between the legs of the bridge.

 

green line

Using Technology.

A great video from Youtube to show the students to introduce them to graphing parabola: https://www.youtube.com/watch?v=E_0AHIaK48A

In the video, it shows how parabolas are even used in famous videogames such as Mario Bros. In the video, you see a few clips of Mario and Luigi jumping over enemies. The video outlines the path that he jumped and you can notice that it is in the shape of a parabola. The video then goes into explanation that Mario if following the path of y=-x^2. After this explanation, the video switches to Luigi. When Luigi jumps, he also follows the form of a parabola, but slightly different then the way Mario jumps. Luigi can jump higher than Mario, but not as far. The video then states that Luigi is following the path of y=-1.5x^2. This can introduce the idea of compression and stretches. The video than continues on with other examples of how parabolas are used within the game such as vertical shifts.

Engaging students: Completing the square

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Haley Higginbotham. Her topic, from Algebra: completing the square.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

To start the activity, I think I would do some examples of how to complete the square and see if anybody notices a pattern in how it is done. If not, I would give them some hints and some time to think about it more deeply, and maybe give them a few more examples to do depending on time and number of previous examples. After they have figured out the pattern, I would ask them if they knew why it worked to add (b/2)^2, and why they need to both add and subtract it. Then, we would go into the second part of the activity, which would require manipulatives. They would get into partners and model different completing the square problems with algebra tiles, and explain both verbally and in writing why adding (and subtracting) (b/2)^2 works to complete the square. I would probably also ask if you could “complete the cube,” and have them justify their answer as an elaborate. green line

B1. How can this topic be used in your students’ future courses in mathematics?

Completing the square is a fairly nifty trick that pops up a decent bit in Calculus 2, particularly in taking integrals of trig functions. Since they need to be in the specific form of (x+a)^2, or some variation thereof. If a student didn’t know how to complete the square, they would get stuck on how to integrate that type of problem. In addition, completing the square is useful when you want to transform a quadratic equation into the vertex form of the equation. It also could have applications in partial fraction decomposition if you are trying to simplify before doing the partial fraction decomposition, and has applications in Laplace transforms through partial fraction decomposition. It is also helpful in solving quadratic equations if it’s not obviously factorable and the quadratic equation is useful but can be tedious to use, especially if you don’t remember how to simplify radicals.

 

green line

B2. How does this topic extend what your students have learned in previous courses?

Students typically learn, or at least have heard of, the quadratic formula before they have learned completing the square. Completing the square can be used to derive the quadratic formula, so they get more of an idea of why it works as opposed to just memorizing the formula. Also, if a student is having trouble remembering what exactly the quadratic formula is, they can use completing the square to re-derive it fairly quickly. Also, it ties the concepts of what they are learning together more so they are more likely to remember what they learned and less likely to see the quadratic formula and completing the square as two random pieces of mathematical information. Depending on the grade level, completing the square can also extend the idea of rewriting equations. They might have been familiar with turning point-slope form into slope intercept form, but not turning what is sometimes the standard form (the quadratic form) into the vertex form of the equation.

 

Engaging students: Solving absolute value equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Biviana Esparza. Her topic, from Algebra: solving absolute value equations.

green line

B2. How does this topic extend what your students should have learned in previous courses?

One of the things that I love about math is that it all builds up on itself. Absolute value is first introduced in sixth grade, where they just have to determine the absolute value of a number. Given |-4|, the answer is 4, |5|=5, |-16|=16, and so on. In seventh grade, students are expected to be able to use the operations on numbers, such as multiply, add, subtract, and divide. In eighth grade, students should be able to write one variable equations; all lead up to learning how to solve absolute value equations in algebra 2.

 

 

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

How I Met Your Mother is a TV show that aired from 2005 to 2014 on CBS. It is a very popular show to watch on Netflix. In the show’s second to last episode, titled “Last Forever, Part 1,” Marshall Eriksen is asked about his new job, and all of his responses are positive but sound slightly awkward. His wife Lily then explains that Marshall decided to only say positive things about his new job now that he is back in corporate law.

This scene could be used to engage students before a lesson on absolute value equations because the two are sort of related in that with every input, there is a positive output. After watching the scene, the teacher could explain how absolute value equations usually require you to break them up into a positive and negative solution and continue to solve. The positive answer is more straight forward to solve for, and the negative answer probably requires more thought and steps, similar to Marshall having to answer cautiously and slowly when trying to answer in a positive way in the scene.

 

green line

E1. How can technology be used to effectively engage students with this topic?

If the students have access to laptops or tablets or the teacher has access to a class set, Desmos has a nice teacher program and one of the lessons on the site scaffolds student knowledge on distances on number lines all the way up to solving absolute value functions using number lines. The link is provided below. This lesson would be engaging for students because many of them are usually drawn to projects or lessons involving technology. Also, the virtual, interactive lesson does a good job of scaffolding, starting from basic number line knowledge which the students should all be starting with.

https://teacher.desmos.com/activitybuilder/custom/59a6c80e7620f30615d2b566

 

Engaging students: Parallel and perpendicular lines

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Andrew Cory. His topic, from Algebra: parallel and perpendicular lines.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

An activity can be done with students by giving them a map, with a series of roads that run perpendicular or parallel to each other, asking them to identify pairs of perpendicular and parallel roads. To go beyond this, students can then find the slopes of a set of perpendicular or parallel lines on their own, then be asked to identify how they relate to one another. This will eventually lead them to being able to come up with a general rule to finding lines that are perpendicular or parallel to each other. Students can then be asked to create their own streets that will be perpendicular or parallel to some of the streets given. After this, students should be confident going from the representational model of perpendicular and parallel lines to graphing them on a cartesian plane.

 

green line

B2. How does this topic extend what your students should have learned in previous courses?

Studying perpendicular and parallel lines builds on a student’s knowledge of being able to calculate equations of lines and slopes given different amounts of initial information. It extends their knowledge of calculating slopes, and allows them to do it in reverse. Instead of getting two points to find the slope of the line, they may be given one point and the equation of a perpendicular or parallel line. This allows students to extend and apply their knowledge of linear equations, and gives them more situations to apply it to. This can then be extended to more challenging word problems, challenging students to come up with issues that require related slopes.

 

green line

E1. How can technology be used to effectively engage students with this topic?

Desmos can be very useful with engaging students in anything related to geometry or graphs. There are many resources within the website beyond just graphing two lines and viewing the relationship. A teacher can create their own activities within the website to allow students to explore a concept such as perpendicular and parallel lines, or they could use a pre-existing one created and shared by another educator. These activities give a great visual model of how perpendicular and parallel lines look, and then allow it for students to easily get the equations for each of the lines. Using Desmos can give students the capabilities of generating formulas and relationships on their own, without needing to be told what they are from their teachers. This will allow students a quicker path to mastery of the topic, and will lead them to applying it in a wider variety of areas more quickly than a student who is just told that slopes of parallel lines are equal and slopes of perpendicular lines are opposite reciprocals.

 

 

 

 

 

How to picture an exponent

While I’m easily amused by math humor, I rarely actually laugh out loud after reading a comic strip. That said, I laughed heartily after reading this one.

Source: https://xkcd.com/2283/

Engaging students: Making and interpreting bar charts, frequency charts, pie charts, and histograms

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Johnny Aviles. His topic, from Pre-Algebra: making and interpreting bar charts, frequency charts, pie charts, and histograms.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

I would create a project where my students would make and interpreting bar charts, frequency charts, pie charts, and histograms. First, I would begin by using the class as data by asking them questions and use a specific chart for each question. For example, I would ask “who here is Team iPhone? Team Android? or who doesn’t care?” Essentially, I will be separating the class in select groups based on their preference of phone. I will then create a pie chart of the class based on their choice. I then would do more examples of the other charts and explain the purpose of each one and when to use it. After some more examples and practice for them to familiarize themselves with the charts, I will assign the project. I would then divide the class into 4 groups and evenly assign a chart to each student to find a real-world example to apply and create their own specified chart that they’ll present. (I divide the class to ensure that every chart gets represented.) The purpose of the project is for all the students to not only be exposed to all the charts but to also apply them and understand the use for each one.

 

green line

B1. How can this topic be used in your students’ future courses in mathematics or science?

In terms of mathematics, bar charts, frequency charts, pie charts, and histograms are very essential forms of data. These charts are widely used in nearly every future math or science course of students. As appose of a large spreadsheet of data that is hard to interpret, this topic provides a more organized and visual way to provide that collected data and to find useful information. A great example of using this topic is statistics. a spread sheet in given and then transformed in the form of a histogram that would give information of its distribution. With this chart, one can find things such as mean and standard deviation. Statistics also test hypothesis that require data to decide whether or not a certain drug would be effective based on data from frequency charts or histograms. These charts are also widely used in science. They can record the population of a given species, growth of bacteria in a given time, surveys, etc. There are endless possibilities in which these graphs can be applied in students’ future subjects.

green line

C3. How has this topic appeared in the news?

With the vast categories the news covers, there are many examples where bar charts, frequency charts, pie charts, and histograms have been used. The news is for the common people and the common person has socially acquired a short attention span. The news can’t just give a sheet of numbers and expect people to know what it means and let alone look at it. These charts are provided for everyone to be given vast amounts of data gathered in aesthetically pleasing chart that can be quickly interpreted. The weather uses data from previous years to predict what we could be facing in terms of temperature and rain on any given month or season. Sports are all stats that have been recorded and can predict the outcomes of future games and players stats. When a top new story unravels, news channels are quick to look up stats that relate to story and compare data for the viewer. These charts appear in the news frequently and are vital to be comprehended to future students.

 

 

Engaging students: Finding points on the coordinate plane

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Tiger Hersh. His topic, from Pre-Algebra: finding points on the coordinate plane.

green line

A2 : How could you as a teacher create an activity or project that involves your topic?

To find a point on a 2-D coordinate plane we would need to have an x-axis and y-axis. Many things in the real world could act as a coordinate plane and that could also be used to create an activity or project. One of those things could be where the students could use a Nerf gun and fire it at a wall with a coordinate plane. This activity would not only be engaging for students but also help them understand how to plot the points on a coordinate plane, but also show students how to find the point on the coordinate plane.

Students will group up and take turns firing darts at a wall that would have a coordinate plane on it. Each group will have different color darts to indicate where each group has plotted their point. Each student in each group will fire two darts at the coordinate plane; After each student has finished plotting their points they will approximate the point and record it down on their worksheet.

green line

Curr1 : How can this topic be used in your students’ future courses in mathematics or science?

Plotting points on a 2-D coordinate plane is used in almost every future course in mathematics. You can observe the usage of 2-D coordinate planes in Geometry, Algebra 1, Algebra 2, Pre-Cal, and so on.
In Geometry you can plot the points of a triangle on the coordinate plane to then find the distance between them with the distance formula or you could find the midpoint between each point using the midpoint formula. These are only some examples that plot points on the 2-D coordinate plane.

In Algebra 1/2 you can see that you can find the slope between two points using the slope equation. You can also use this concept to plot points for equations that involve the slope-intercept form, polynomials, the unit circle, shapes, etc. The points that are plotted could also show what is happening over a period of time and also give us an idea what the equation is trying to tell us.

In Pre-cal you plot points on a coordinate plane in the equation x^2+y^2=1 to form the unit circle and also plot points when you have to rotate or transform a shape or equation.

 

green line

Cul1 : How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

The game Starcraft 2 is a real-time strategy (RTS) game where you have to build an economy to fuel an army and beat the opponent by destroying their infrastructure, economy, or army. Interestingly when you build your building you notice that you are building on a 2-D coordinate plane.

The game itself is in its own 2-D coordinate plane where you have to plan where to move at certain points and also place your buildings at certain points to either block off a ramp or create a concave for your units so that they are able to deal more damage towards the opponent. There are also times in the game where you have to keep in mind about key parts in the map where your opponent is, where your next bases are, where proxies are, and where to set up counter attacks on your opponent.

 

Snakes on a Plane

Sadly, the snakes fail the vertical line test.

Source: https://www.facebook.com/photo.php?fbid=2275159199164147&set=gm.500736803735509&type=3&theater