# My Favorite One-Liners: Part 12

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them.

Often in mathematics, one proof is quite similar to another proof. For example, in Precalculus or Discrete Mathematics, students encounter the theorem

$\sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k$.

The formal proof requires mathematical induction, but the “good enough” proof is usually convincing enough for most students, as it’s just the repeated use of the commutative and associative properties to rearrange the terms in the sum:

$\sum_{k=1}^n (a_k + b_k)= (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n)$

$= (a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)$

$= \sum_{k=1}^n a_k + \sum_{k=1}^n b_k$.

Next, I’ll often present the new but closely related theorem

$\sum_{k=1}^n (a_k - b_k) = \sum_{k=1}^n a_k -\sum_{k=1}^n b_k$.

The proof of this would take roughly the same amount of time as the first proof, but there’s often little pedagogical value in doing all the steps over again in class. So here’s the line I’ll use: “At this point, I invoke the second-most powerful word in mathematics…” and then let them guess what this mysterious word is.

After a few seconds, I tell them the answer: “Similar.” The proof of the second theorem exactly parallels the proof of the first except for some sign changes. So I’ll tell them that mathematicians often use this word in mathematical proofs when it’s dead obvious that the proof can be virtually copied-and-pasted from a previous proof.

Eventually, students will catch on to my deliberate choice of words and ask, “What the most powerful word in mathematics?” As any mathematician knows, the most powerful word in mathematics is “Trivial”… the proof is so easy that it’s not necessary to write the proof down. But I warn my students that they’re not allowed to use this word when answering exam questions.

The third most powerful phrase in mathematics is “It is left for the student,” thus saving the professor from writing down the proof in class and encouraging students to figure out the details on their own.