Engaging students: Multiplying binomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Cire Jauregui. Her topic, from Algebra: multiplying binomials.

green line

How can technology be used to effectively engage students with this topic?

Khan Academy has a whole series of videos, practice problems, and models to help students learn about multiplying binomials. The first in this series is a video visualizing the problem (x+2)(x+3) as a rectangle and explains that multiplying the binomials would give the area taken up by the rectangle. This would help students connect multiplying binomials to multiplying numbers to find area. This can also help students who learn better with visual examples by giving them a way to show a picture demonstrating the problem they are multiplying. Khan Academy then moves from using a visual representation to a strictly alpha-numerical representation so students can smoothly transition from having the pictures drawn out to just working out the problem. The first video in the series of pages at Khan Academy can be found at this link: https://tinyurl.com/KhanAcademyBinomials

green line

How does this topic extend what your students should have learned in previous courses?

Multiplying binomials extends on two-digit times two-digit multiplication that students learn and practice in elementary and middle school courses. This video from the platform TikTok by a high school teacher Christine (@thesuburbanfarmhouse) shows the connection between vertical multiplication of two numbers and the multiplication of binomials together: https://tinyurl.com/TikTokFOIL By showing students that it works the same way as other forms of multiplication that they have already seen and hopefully mastered, it sets the students up to view the multiplication of binomials and other polynomials in a way that is familiar and more comfortable. This particular video is part of a miniature series that Christine recently did explaining why slang terms such as FOIL (standing for “first, outside, inside, last” as a way to remember how to multiply binomials) which many classrooms have used (including my own high school teachers), which are helpful when initially explaining multiplication of binomials, ultimately can be confusing to students when they move on to multiplying other polynomials. I personally will be staying away from using terms like FOIL because as students move on to trinomials and other larger polynomials, there are more terms to distribute than just the four mentioned in FOIL.

green line

How can this topic be used in your students’ future courses in mathematics or science?

As I mentioned in the last question, learning to multiply binomials can lead students to success in multiplying polynomials. This skill can also help students factor polynomials in that it can help them check their answers when they are finished. It can also help them recognize familiar-looking polynomials as having possible binomials as factors. If a student were to see 12x2-29x-8 and couldn’t remember how to go about factoring it in other ways, a student could use a guess-and-check method to factor. They might try various combinations of (Ax+B)(Cx-D) until they find a satisfactory of A, B, C, and D that when the binomial is multiplied, creates the polynomial they were trying to factor. Without solid skills in multiplying binomials, a student would likely be frustrated in trying to find what A, B, C, and D as their multiplication could be wrong and seemingly no combination of numbers works.

Engaging students: Solving absolute value equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Conner Dunn. His topic, from Algebra: solving absolute value equations.

green line

How could you as a teacher create an activity or project that involves your topic?

This topic is an excellent concept for algebra students wanting real life applications when learning math concepts. In creating an activity relevant to this, the “real life” concept I’d want to emphasize is distance, which conveniently is in the definition of absolute value. Distance can be expressed in words or in pictures, and specifically with absolute value, we model distance as a one-dimensional (one variable) function. To express a model like this, I’d want get students to know what the numbers and operations can mean for a distance problem. For example, a student should be able to know that |x-7| = 3 can be expressed as “the distance between x and 7 is 3.” The potential activity here is to get students to either express absolute-value equations in words or vice versus. The same concept of distance can be played out in pictural or graphical representations. Obviously, I can use absolute value graphs to model this, but I would specifically look at one-dimensional representation and maybe have students try and model a situation using absolute value equations. It’ll be in these activities that I could really nail down true meanings of 2-solution, 1 solution, or no solution problems and why, for example, they have to check for extraneous solutions when solving.

green line

How can this topic be used in your students’ future courses in mathematics or science?

The concept of solving this type of equation is really relevant and similar to that of solving for quadratic equations as well as polynomial equations in general. When students are able to grasp the concept of having 0, 1, or 2 solutions in an absolute value equation and know why, they’ll be using this understanding when solving for polynomials of high degrees. I’d also like to imagine students might want to make the connection to midpoints in Geometry. Absolute value equations can tell the 1-dimensional distance from a point to another two points in either direction. When Geometry students see this modelled on a number line, they may be able to identify 3 points equidistant from one another forming 2 congruent segments.

green line

How does this topic extend what your students should have learned in previous courses?

The things I would teach about solving absolute value equations really build off students’ understanding of equivalence and the properties about it that they use when asked to “solve” for anything an algebra class. One of the big steps in solving a|bx+c| + d = e is described as “solving for the absolute value.” This step builds off students’ previous works of “solving for x.” The solution for connecting these is clear: just let the “x” or rather the variable to solve for be the absolute value, and then solve for it using those equivalence properties they know. The great thing about this is that it builds on the idea that when solving for unknown variables, it’s okay to not immediately know them. Equiveillance properties are tools that students can use to work towards solving for unknowns. The more accustomed students are to these tools, the better, so when throwing in absolute values into the mix, it makes for good practice in using “equivalence tools.”

Engaging students: Adding and subtracting polynomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Enrique Alegria. His topic, from Algebra: multiplying polynomials.

green line

How can this topic be used in your students’ future courses in mathematics and science?

This topic can be used in students’ future courses in mathematics by simplifying expressions of increasing degree. In Algebra II students are expected to simplifying polynomials of varying degrees as they move on to multiplying and dividing polynomials. From there determining the factors of a polynomial of degree three and degree four. Real-world problems can be solved through the simplification of several like terms. Each term representing a specific part of the problem. We can even compare the addition and subtraction of polynomials to runtime analysis in Computer Science. Measuring the change in the degree and how that affects the output. In a way, this can translate to the runtime of a program. For example, a chain of commands with a constant time is run. A loop is nested in another loop that is placed after the first expressions. This has changed the overall runtime of the program from constant time to quadratic because of the degree of the nested loops. The overall time would be the addition of the expressions and their corresponding times.

green line

How does this topic extend what your students have learned in previous courses?

This topic extends from the early concept, ‘Combining Like Terms.’ Starting with adding and subtracting items of similar groupings such as 8 apples and 4 apples altogether are 12 apples. Bringing students to place value such as adding 3 ones and 2 ones to adding multi-digit numbers. We then leap towards Algebra introducing expressions and equations. Learning about linear and quadratic equations and graphing them. Students should have learned about monomials in correspondence with coefficients and exponents. From there, students are familiar with algebraic terms. Those are the building blocks that we are going to be expanding upon. Once students familiarize themselves with several terms in an expression, they will focus on adding or subtracting like terms by focusing on both the coefficient, term, and exponents on the variables. Shortly after the students can continue to be challenged by using terms such as 6xy or 3a^2b^3+4a^2b^3c^2 to focus on the terms and confirm if they are ‘like’ to be combined or just notice the fact that they have some common variables with the same exponents but with a slight difference other than the coefficient, the expression cannot be simplified as one may think.

green line

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

Adding and subtracting polynomials can be engaging to students with the help of Brilliant. This site starts with helping students identifying polynomials and their degrees to help students understand how to describe them. Then moving to the arithmetic of polynomials performing addition and subtraction operations on the polynomial numbers. This source goes through polynomials through challenging and insightful exercises. For example, a quadrilateral of sides such as 5, 3x+4, 4x+1, 17x-10, and from there simplifying the expression. Students would be able to substitute values and determine if a specific quadrilateral has been made. I can have students go through a few exercises as a class or on their own and then they can come up with a problem on their own that would be posted to the ‘public’ (which would be only their class) so that the students will be able to have classroom interaction and grow as they challenge each other. Students can apply this concept by creating a large polynomial expression and then simplifying it and lastly graphing the equation.

References:

Polynomials. Brilliant.org., from https://brilliant.org/wiki/polynomials/

Simplifying Expressions. Brilliant.org., from https://brilliant.org/wiki/simplifying-expressions/

Engaging students: Solving systems of linear inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place. I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course). This student submission again comes from my former student Angelica Albarracin. Her topic, from Algebra: solving linear systems of inequalities. green line What interesting (i.e., uncontrived) word problems using this topic can your students do now? One example of an interesting word problem students can do using this topic is based on a technique astronomers use to learn about celestial bodies. Being able to assess the number of craters a body has on its surface can reveal information about the body’s age, as well as its history of impacts. In comparing the number of craters two bodies have experienced over time, astronomers are able to compare their lifetimes and hypothesize reasons for differences and/or similarities. This image has an empty alt attribute; its file name is crater1.png
Taken from https://spacemath.gsfc.nasa.gov/algebra2.html
Another example of an interesting word problem pertains to determining whether a specific phone plan is best for you. When choosing between certain plans, individuals may have to decide between a higher flat fee and a lower rate per minute or a lower flat fee and a higher rate per minute. In many cases, the answer may not be so obvious so to be able to figure out which is the best deal can prove to be a very helpful money saver. Of course, the answer to this question depends on how many minutes an individual plans to use a month, but we can use linear systems of equations to find out at which point do the plans differ, and thus finding a starting point to the solution. This image has an empty alt attribute; its file name is phone1.png This image has an empty alt attribute; its file name is phone2.png Taken from https://students.ga.desire2learn.com/d2l/lor/viewer/viewFile.d2lfile/1798/12938/Algebra_ReasoningwithEquationsandInequalities12.html green line How does this topic extend what your students should have learned in previous courses? In previous courses, students should have learned about x and y intercepts and solving linear equations. Solving linear systems of equations is and extension of x and y intercepts because one of the major components in this topic is finding the exact point at which two different linear functions meet. We can think of a typical problem of finding the x or y intercept of a linear function in terms of a system. For example, we can let our first equation be y = 3x + 2 and the second be y = 0. From this we can clearly see that our second equation is the x-axis, and as we are trying to find the point of intersection between a linear function, we end up calculating the x-intercept of our first function. It is also not difficult to see that solving linear systems of equations serves as an extension to solving linear equations. When employing the method of substitution, you must solve for one variable, in terms of the other. This process requires the student to know how to solve singular linear equations, and to apply their solutions through substitution. We can also see an extension regarding graphing linear equations. When solving linear systems of equations by graphing, one must graph each individual linear equation. Once the two individual equations are graphed, the solution can be found by observing the point at which the two equations intersect if at all. green line How can technology be used to effectively engage students with this topic? Desmos is widely regarded for its creative lessons that integrate mathematical topics in fun and engaging ways. For the topic of solving systems of linear equations with graphing and substitution, one such Desmos activity is titled Playing Catch-Up. The first two slides set up an engaging premise where a video compares the running speed of an average person and a professional runner. Further along the activity, the student can see a graphical representation of their speeds and is able to make a prediction as to whether they think one person will pass the other. Aside from being able to see an animated graph that corresponds to the information given in the video, there is also an interesting short answer feature on the first slide. This feature allows the student to ask a question regarding the situation they are presented with in the video. The most helpful part of this feature is that not only can the teacher view the student responses, but also the students can see each other’s responses. This allows for students to communicate with each other in a controlled environment and lead the way for further elaboration on some of the most asked questions. This specific Desmos activity places much of its emphasis on solving systems of linear equations through graphing, however substitution can still have a place in technology. Typically, when students are introduced to this concept, they are taught the graphing method first as its visual component aids in understanding. Graphing isn’t always reasonable however as it is time consuming and you may be faced with equations that are difficult to graph. By using technology such as the Desmos graphing calculator, the teacher can show the student of an example of a linear system of equations that would be unreasonable to solve by graphing. This gives the students reasoning as to why learning another method such as substitution is necessary while also making them consider a possibility that they might not have thought of before. References: https://spacemath.gsfc.nasa.gov/algebra2.html https://students.ga.desire2learn.com/d2l/lor/viewer/viewFile.d2lfile/1798/12938/Algebra_ReasoningwithEquationsandInequalities12.html https://teacher.desmos.com/activitybuilder/custom/5818fb314e762b653c3bf0f3

Engaging students: Solving one- or two-step inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Jesus Alanis. His topic, from Algebra: solving one- or two-step inequalities.

green line

How could you as a teacher create an activity or project that involves your topic?

As a teacher, the activity I would make so that this topic is more fun is by using the game battleship. When I was in school, learning this lesson for the first time, we did a gallery walk that you would solve for the solutions and would go searching for that solution. Well, you can use the same problems used in a gallery walk. All you would have to do is put it on a worksheet that could be half the solutions of the enemy’s problems and the student’s problems to work on. The student will place(draw) their “ship” on the enemy’s solution. With this activity, you can pair up students and make them go one by one, or since time may be an issue you can make it a race between the two students to see who sinks the opponent’s ships first.

I got the inspiration from here. https://www.algebra-and-beyond.com/blog/bringing-back-battleship

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

A brief history of inequalities is that the less than or greater than signs were introduced in 1631 in a book titled “Artis Analyticae Praxis ad Aequationes Algebraicas Resolvendas” created by a British mathematician named Thomas Harriot. An interesting fact is that the creator’s work and the book was published 10 years after his death. A shocking fact is that the actual symbols were created by the book’s editor. At first, the symbols were just triangular symbols that were created by Harriot which was later changed by the editor to what we now know as < and >. A fun fact is that Harriot used parallel lines to symbolized equality, but the parallel lines were vertical, not horizontal as we now know as the equal sign. In the year 1734, a French mathematician named Pierre Bouguer used the less than or equal to and greater than or equal to. Also, there was also another mathematician that use the greater than/ less than symbols but with a horizontal line above them. During these times, the symbols were not yet set in stone and were still being changed. The symbols were actually just triangles and parallel lines to symbolized greater than, less than, greater than or equal to, less than or equal to, and equal to.

green line

How can technology be used to effectively engage students with this topic?

By using technology effectively with this topic, is that I found an online game that has the same idea of the battleship. The website is this: https://www.quia.com/ba/368655.html. The game is online so this is really good resource especially since we are in a pandemic but also an extra resource if the student needs more practice that they can do on their own. This is a good activity for students because I know that there are schools that have in-person classes so each student can use their own computer to prevent any more spreading of the virus while being in the classroom. There are also schools that have classes through Zoom and Google Classroom so they can add this online game as an assignment and make the students have them write down their questions and answers with their work to see the way they work the problems out.

References:

  • Seehorn, Ashley. “The History of Equality Symbols in Math.” Sciencing, Leaf Group Media, 2 Mar. 2019, sciencing.com/history-equality-symbols-math-8143072.html.
  • Lythgoe, Mrs. “Two-Step Inequalities Battleship.” Quia, http://www.quia.com/ba/368655.html.

Engaging students: Rational and Irrational Numbers

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Trenton Hicks. His topic, from Pre-Algebra: rational and irrational numbers.

green line

The big history associated with irrational numbers involves a Greek philosopher, Hippasus, and his peers, the Pythagorean Theorem, and a square. Hippasus had a square with side lengths of 1 unit, raising the question: what is the distance from corner to corner across the square? The pythagorean theorem tells us that it should be the square root of two. After searching for two numbers to represent the square root of two as a ratio, Hippasus sought out something else: proving that it wasn’t rational. He did so by contradiction, assuming that the square root of two was rational, and that said ratio was in simplest terms. By manipulating the equation, he found that one of the integers in the ratio was even. By further manipulation, he found that the other integer was even as well, reaching a paradox. The ratio couldn’t be in simplest terms if both numbers were even. With this, he had proven that there were no two numbers that could represent the square root of two as a ratio. Thus, the concept of an irrational number was born. It is rumored that once he went to present his findings, his peers disapproved. This new idea contradicted their original beliefs, and was even considered blasphemy. Some rumors even suggest he was murdered for this.

green line

Given the history above, the students could know what it was like for Hippasus and his peers by designing a humorous hypothetical to get them interested in the history. “Imagine you’re in a fellowship of people just like yourselves. You love pizza. You love the toppings, the taste, the artistry. You and your fellow pizza enthusiasts believe that pizza is the language of the universe, and worship it accordingly. One day, you are tasked with cracking a new subcategory of pizza: vegetable pizza. You test vegetables far and wide, and nothing seems to be just what you’re looking for. One day, you see a pineapple sitting on the counter, and you resort to trying it on pizza, since you’re out of ideas. You try it, and it works perfectly. You rush to tell the other pizza enthusiasts and you are shunned for pizza blasphemy. They get so furious with you, that they take you on a boat, and throw you overboard. Your story is very similar to another man’s story, but this man was thrown off a boat for discovering a new set of numbers, not a new flavor of pizza.” Then, to wrap up, the instructor could hand out rulers and squares and tell students to calculate and measure the square’s diagonal corners, to simulate the problem that Hippasus was confronted with.

green line

By this point, the students should have already seen concepts related to fractions,  pythagorean theorem, square roots, and they may have even heard of pi or the square root of 2. This concept introduces new terminology to describe fractions as “ratios” or “rational” and introduces a new concept of irrational numbers. The most common example, referenced above, uses a square to construct a 45-45-90 triangle, which is also potentially something they have seen before. Ratios in general are a topic directly related to similar triangles. Lastly, in order to compute areas of circles and related geometries, students have had to use the irrational number pi. When first introduced to this number, students may have been told that this number is irrational without any context of what that means. This lesson and curriculum would be a perfect opportunity to fill in those gaps, while addressing any misconceptions about what irrational numbers are. For instance, many students believe that ⅓ is irrational because it cannot be expressed as a finite decimal.

Source: https://nrich.maths.org/2671

Source: https://youtu.be/sbGjr_awePE

Engaging students: Negative and zero exponents

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Gary Sin. His topic, from Algebra: negative and zero exponents.

green line

How could you as a teacher create an activity or project that involves your topic?

The idea behind negative and zero exponents is to basically go backwards in our method of obtaining answers to positive exponents. I can create an activity where the students will begin by applying their knowledge on positive exponents represented on a number line and how every exponent increase in 1 multiplies the previous number by the base. I can then ask the students to point out a pattern they notice between the answers as the exponents increase. The students will realize that the answer is always the previous answer multiplied by the base.

Now I will ask the students what will happen if we went backwards down the number line instead. The students will then realize that going backwards meant dividing the next answer by the base. With this realization, I will guide the students all the way back to the first power and ask them what will happen now if we kept dividing by the base. The students will figure out that the zero exponent of a base would be 1. I will continue by asking the students what will happen now if we kept going and dividing by the base. The students will finally realize that negative exponents will meant dividing the answers repeatedly by the base. I will conclude by asking the students to go forward down the number line so that they will conclude that this logical way of thinking works with how exponents work.

green line

How can this topic be used in your students’ future courses in mathematics or science?

Exponents are easier ways of representing the multiplication of a base by itself. The students will grasp the concept of exponents once they realize zero and negative exponents are obtained the same way positive ones are obtained, except going backwards.

Therefore, the grasp of exponents is important as they progress towards algebra 1 and 2 where variables are represented with exponents. This is very important as it represents a leap from linear equations to quadratic equations and subsequently cubic equations. Polynomials also greatly utilize exponents and learning how exponents work will allow the students to simplify complicated polynomials by combining like terms. Students learning negative exponents will also allow them to represent polynomials in fraction form which is sometimes easier to manipulate.

The knowledge of exponents is very important once they reach advanced math courses like pre-calculus, calculus and future college math courses. Differentiation and integration both heavily involves exponents.

green line

How does this topic extend what your students should have learned in previous courses?

Understanding how negative and zero exponents work depends on basic knowledge of arithmetic and manipulating fractions. Also the students must have prior knowledge on how positive exponents work.

Exponents is the next level after arithmetic. Arithmetic begins with understanding counting, then learning how to add. Multiplication is derived from addition and it is basically the simplification of adding large groups of the same number. We can see that exponents is the next step after multiplication. The simplification of multiplying large groups of the same number.

However, discovering how zero and negative exponents are obtained requires the use of division. Students will apply their knowledge on how to divide and how to represent division as fractions. E.g. 1 divide by 2 can represented as ½.

Of course this requires the basic knowledge on how exponents themselves work and understanding how the exponent depends on the number of times we multiply the base.

Engaging students: Finding prime factorizations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Brendan Gunnoe. His topic, from Pre-Algebra: finding prime factorizations.

green line

How can prime factorization be used in curriculum?

The teacher starts the class by asking students how they would find the least common multiple and greatest common divisor for two numbers. For the LCM, the most basic answer is listing the multiples of both denominators until they share a common multiple. For GCD, the most basic answer is listing out the factors of both numerator and denominator and finding the largest one in common.

Both processes can be made faster when using prime factorization, especially for larger numbers. First, do the process of prime factorization for both numbers. Then, for each prime, take the highest power on the lists and multiply everything together.

For example, take 12 and 45.

12 = 2^2 \times 3^1

45 =3^2 \times 5^1

\lcm(12,45) = 2^2 \times 3^2 \times 5^1 = 180

The process for finding the GCF is similar. Start off by doing the prime factorization for both numbers. Then, for each shared prime factor, take the smallest power and multiply everything together.

For example, take 12 and 30.

12 = 2^2 \times 3^1

30 =2^1 \times 3^1 \times 5^1

\gcd(12,45) = 2^1 \times 3^1 = 6

This process generalizes very easily for any amount of input numbers.

GCF and LCM are incredibly important when working with fractions and are used when reducing and adding fractions. Because fractions have loads of misconceptions associated with them, giving students another way to understand fractions can be very beneficial.

green line

Technology

Have you ever wondered why we use 60 seconds in a minute and 60 minutes in an hour? Or why there is 24 hours in a day? What about why there is 360 degrees in a circle? One explanation is because these numbers can be divided evenly by loads of smaller numbers that we use often. In other words, these numbers have lots of factors in them. These kinds of numbers are called highly composite numbers.

A great video showcasing highly composite numbers is Numberphile’s video “5040 and other Anti-Prime Numbers,” hosted by Dr. James Grimes. This video is extremely dense with informative as Dr. Grimes explains what a highly composite number is, shows properties of these numbers, explains why they have these properties, and gives examples of how highly composite numbers are used both in math and in real life. Dr. Grimes also gives a few historical uses of highly composite numbers, which answer some of the questions listed above.

Prime factorization is the foundation of highly composite numbers. Highly composite numbers can be an interesting and exciting application of prime factorization.

green line

Application

Semiprime numbers were also used in the making of the Arecibo message. Because the message is composed of 1679 bits, there is only four ways of decomposing the message into a rectangle. All possible decompositions of 1679 into a rectangle are 1×1679, 73×23, 23×73 and 1679×1. If decoded correctly, then the message forms a picture which contains loads of information about the solar system and life on Earth.

For a way to make semiprime numbers into an engaging activity for students, the teacher could have students create their own mini version of the Arecibo message and show them off in class. Students can be made into groups and each group get assigned a certain semiprime. Then, each group gets to decide what information goes in their mini message and draw their message onto a sheet of poster paper with a grid on it. Finally, they present their message to the class, representing the students sending their message off into space for extraterrestrial life to decode.

References:

https://topdrawer.aamt.edu.au/Fractions/Misunderstandings

https://www.youtube.com/watch?v=2JM2oImb9Qg

https://en.wikipedia.org/wiki/Semiprime

https://en.wikipedia.org/wiki/Arecibo_message

Engaging students: Probability and odds

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place. I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course). This student submission again comes from my former student Angelica Albarracin. Her topic, from Pre-Algebra: probability and odds. green line How can this topic be used in your students’ future courses in mathematics or science? Probability is a topic that commonly appears in biology in the study of sexual reproduction. Both in freshman and college level biology, students are required to learn how to create and use Punnett squares. Punnett Squares are used to determine the likelihood certain alleles will appear in the offspring of 2 organisms. These alleles can do anything from determining eye color, to determining whether or not an organism will have a hereditary disease such as hemophilia. Though statistics is not a required mathematics class for high schoolers in the state of Texas, many students will end up encountering this class in high school and/or college as it pertains directly to many fields of study such as math, biology, chemistry, and physics. One of the most important concepts in statistics is the idea of statistical significance. Using the scientific method and other techniques for conducting a survey or experiment, it is easy to analyze, and record data. However, a major component of statistics is being able to interpret the implications of any given data. One of the biggest indicators that an experiment or survey that was conducted holds real implications is its statistical significance, which is essentially a measure of the probability of observing results as extreme as what was observed. green line How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)? Speed running is a category of gaming that has become hugely popular over the years in which highly skilled and knowledgeable players compete amongst each other to complete a game as fast as possible. One of the most popular of these games in this scene is Minecraft and due to Minecraft’s popularity, speed runners of this game often come within seconds of world records, meaning every small optimization could be the difference between 1st and 2nd place on the leaderboards. Minecraft is a highly open and adventurous game primarily because each “world” is randomly generated, meaning that no two playthroughs are alike. This randomness not only encompasses world generation, but also factors into the availability of resources in the form of animals, enemies, and even ores used for building and crafting items. The most notorious section of the game where random generation plays a huge role in the speed run is in the collection of an essential item known as the ender pearl. In order to reach the final stage of the game, a minimum of 12 ender pearls are required, which can only be obtained from Endermen, a type of enemy in the game. Though ender pearls are considered an essential item for the completion of the game, it is theoretically possible to complete the game in its entirety without ever obtaining a single pearl.  This is due to a unique mechanic the game uses to allow the player into its final stages. Ender pearls are used in combination with a material called Blaze Powder to make a new item known as an Eye of Ender. Eyes of Ender are used to both locate a special portal to allow players into the “End” and to activate said portal. This portal (known as the End Portal) can only be activated with 12 eyes, but this is where the game’s inherent randomness plays an important factor. For each of the 12 slots in the portal dedicated to the placement of the eyes, there is a 10% chance that there will already be one inside, meaning the player would not need to provide one of their own. It is also important to note that while Eyes of Ender are used to locate this portal, it is completely possible to find this portal on your own, it is simply faster to use the Eye of Ender as a guide (and being faster is in the interest of speed runners). With this being said, the probability a player can complete the game without the usage of a single ender pearl is about 1 in 1 trillion! So, what’s the big deal? Speed runners can simply obtain the required pearls and ignore this possibility, right? Normally this would be the easy answer, but it becomes a bit more complex when we consider the nature of ender pearls. As mentioned earlier, ender pearls can only be obtained from endermen, and while their exact spawn rates are unknown, they are considered to be uncommon. In addition, each endermen has only a 50% chance of dropping an ender pearl upon defeat. If you consider this with the fact that enemies primarily spawn during the night cycle of the game, it is easy to see how obtaining these pearls can take a lot of time, something a speed runner wants to avoid at all costs. Consequently, runners are often put into a scenario in which they must balance their risk and reward. Though the probability a runner will encounter an End portal with all 12 eyes built in is near impossible, the likelihood that 2 or even 3 eyes would be there is not so low. Should a speed runner devote more time to finding ender pearls, though some of their effort maybe be for nothing, or should a runner find most of the pearls, and hope the rest are at the portal waiting? In a category of gaming where every second counts, probability can be used to figure out the most optimal answer to this question, and lead hopefuls to new world records. green line How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? An important concept in probability is the Law of Large Numbers which states that “the relative frequency of an outcome approaches the actual probability of that outcome, as the number of repetitions gets larger” (see link below). This law can be easily observed through repeatedly tossing a coin or rolling a die, however, as the law suggests, this must be done a large amount of times. Tossing a coin 500 times in the classroom, while helpful to demonstrate this law in action, is time consuming and tedious. As a remedy to this, Texas Instruments developed an app for TI-84 graphing calculators called Probability Simulation.
In this free app, students can choose from a variety of actions to simulate such as tossing coins, rolling dice, picking marbles, and drawing cards. In the image above, the calculator is simulating the results of rolling two die. There are many useful features and settings within this app but two of the best ones are the ability to perform an action 50 at a time (indicated by +50) and a graph to keep track of the results of all previous actions. Having the ability to perform each action quickly and in large quantity makes this a much less time consuming and material intensive activity. In addition, having a graph documenting each result from previous actions also helps tremendously in demonstrating the Law of Large Numbers as it acts as a visual aid. In the picture above, the rough formation of a bell curve can be seen after 501 rolls. References: https://education.ti.com/en/building-concepts/activities/statistics/sequence1/law-of-large-numbers https://www.minecraftseeds.co/stronghold-with-end-portal/ https://www.speedrun.com/mc/full_game#Any_Glitchless

Engaging students: Laws of Exponents

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Jesus Alanis. His topic, from Pre-Algebra: the Laws of Exponents (with integer exponents).

green line

How could you as a teacher create an activity or project that involves your topic?

I would create a project where the students would have to create a “poster”. First, you would give each student a strip that contains one of the laws of the exponent. On the strip, there will be 3 expressions for them to solve that involves one of the laws and have a blank space for the student to create a “rule” for their law. This is where you will let your students find out what law they got. Once they figured out their law they will create a poster that will have the name of the law, the rule of the law (by the rule I mean just using variables, for example, the Product of Powers it would be x^m \cdot x^n = x^{m+n} ), a complete sentence which explains the rule in their own words, and an example of the law which can be one of the expressions from the strip. For the poster, you would want students to use color and decorate the way they want. This will let the student’s inner artist out and creativity shine. You can have your students present their law, or you can have a gallery walk so they can look at all the different laws.

The purpose of the project is for the student to play with the expressions causing them to question which law they received and letting them create a rule that makes them understand how the law works. The sentence on the poster will demonstrate if the student understood the law. This is a project that can be used to let students find out for themselves or this could be a project to help students remember what they learned.

Something extra but you can also make this a relay race by using the strip or the whole paper where the students must at least do one expression from each of the laws of the exponent. In the end, each student in the group has at least done all three laws that were on the page. With the page from TEA, there are only three laws on there, but you could add the rest on there to make the race a little longer.  The goal is to have each student have practice with each law that is on the page, they are in a group so they can help each other and familiarize themselves with the laws and peers.

green line

How can this topic be used in your students’ future courses in mathematics or science?

The way students can use the Law of Exponents in the future is that it will help write or type very large numbers towards using fewer numbers. This will not cause the value of the number to change but will be less to write. For example,

2,357,000,000,000 = 2.357 \times 10^{12}.

The law of exponents will also help with loan interest rates that can be used to predict how much you will have to pay in a certain time frame. Exponents are used to determining the pH level of substances, see the growth of bacteria, see the population of a city, and how much has it increased or decreased, and many more.

green line

How has this topic appeared in pop culture?

I did not really find where it appeared in pop culture, but I did find a connection of how you can use the clip of SpongeBob to the Law of Exponents. The way you can connect them is that SpongeBob says all the specific rules to blow a bubble. This is to engage students and make sure to activate their prior knowledge that goes with the rules like the way we do with the area of a rectangle we first have to find the length of the sides and then place them in the formula to be multiplied. The small clip is a demonstration that with the Law of Exponents we must “obey” the math operations so that our results are as perfect as the duck bubbles. Also, we must make the connection between rules and laws which are very similar.

References