Thoughts on Numerical Integration: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show my series on numerical integration.

Part 1 and Part 2: Introduction

Part 3: Derivation of left, right, and midpoint rules

Part 4: Derivation of Trapezoid Rule

Part 5: Derivation of Simpson’s Rule

Part 6: Connection between the Midpoint Rule, the Trapezoid Rule, and Simpson’s Rule

Part 7: Implementation of numerical integration using Microsoft Excel

Part 8, Part 9, Part 10, Part 11: Numerical exploration of error analysis

Part 12 and Part 13: Left endpoint rule and rate of convergence

Part 14 and Part 15: Right endpoint rule and rate of convergence

Part 16 and Part 17: Midpoint Rule and rate of convergence

Part 18 and Part 19: Trapezoid Rule and rate of convergence

Part 20 and Part 21: Simpson’s Rule and rate of convergence

Part 22: Comparison of these results to theorems found in textbooks

Part 23: Return to Part 2 and accuracy of normalcdf function on TI calculators

Parabolic Properties from Pieces of String

I am pleased to announce that my latest paper, “Parabolic Properties from Pieces of String,” has now been published in Math Horizons. This was a really fun project for me. As I describe in the paper, I started wondering if it was possible to convince a student who hadn’t learned calculus yet that string art from two line segments traces a parabola. Not only was I able to come up with a way of demonstrating this without calculus, but I was also able to (1) prove that a quadratic polynomial satisfies the focus-directrix property of a parabola, which is the reverse of the usual logic when students learn conic sections, and (2) prove the reflective property of parabolas. I was really pleased with the final result, and am very happy that this was accepted for publication.

Due to copyright restrictions, I’m not permitted to freely distribute the final, published version of my article. However, I am able to share the following version of the article.

The above PDF file is an Accepted Manuscript of an article published by Taylor & Francis in College Mathematics Journal on February 24, 2022, available online: Full article: Parabolic Properties from Pieces of String (tandfonline.com)

A New Derivation of Snell’s Law without Calculus

Last week, I posted that my latest paper, “A New Derivation of Snell’s Law without Calculus,” has now been published in College Mathematics Journal. In that previous post, I didn’t provide the complete exposition because of my understanding of copyright restrictions at that time.

I’ve since received requests for copies of my paper, which prompted me to carefully read the publisher’s copyright restrictions. In a nutshell, I was wrong: I am allowed to widely distribute preprints that did not go through peer review and, with extra restrictions, the accepted manuscript after peer review.

So, anyway, here it is.

The above PDF file is an Accepted Manuscript of an article published by Taylor & Francis in College Mathematics Journal on January 28, 2022, available online: Full article: A New Derivation of Snell’s Law Without Calculus (tandfonline.com).

A New Derivation of Snell’s Law without Calculus

I’m pleased to say that my latest paper, “A New Derivation of Snell’s Law without Calculus,” has now been published in College Mathematics Journal. The article is now available for online access to anyone who has access to the journal — usually, that means members of the Mathematical Association of America or anyone whose employer (say, a university) has institutional access. I expect that it will be in the printed edition of the journal later this year; however, I’ve not been told yet the issue in which it will appear.

Because of copyright issues, I can’t reproduce my new derivation of Snell’s Law here on the blog, so let me instead summarize the main idea. Snell’s Law (see Wikipedia) dictates the angle at which light is refracted when it passes from one medium (say, air) into another (say, water). If the velocity of light through air is v_1 while its velocity in water is v_2, then Snell’s Law says that

\displaystyle \frac{\sin \theta_1}{v_1} = \displaystyle \frac{\sin \theta_2}{v_2}

From Wikipedia

I was asked by a bright student who was learning physics if there was a way to prove Snell’s Law without using calculus. At the time, I was blissfully unaware of Huygens’s Principle (see OpenStax) and I didn’t have a good answer. I had only seen derivations of Snell’s Law using the first-derivative test, which is a standard optimization problem found in most calculus books (again, see Wikipedia) based on Fermat’s Principle that light travels along a path that minimizes time.

Anyway, after a couple of days, I found an elementary proof that does not require proof. I should warn that the word “elementary” can be a loaded word when used by mathematicians. The proof uses only concepts found in Precalculus, especially rotating a certain hyperbola and careful examining the domain of two functions. So while the proof does not use calculus, I can’t say that the proof is particularly easy — especially compared to the classical proof using Huygens’s Principle.

That said, I’m pretty sure that my proof is original, and I’m pretty proud of it.

Engaging students: Completing the square

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Haley Higginbotham. Her topic, from Algebra: completing the square.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

To start the activity, I think I would do some examples of how to complete the square and see if anybody notices a pattern in how it is done. If not, I would give them some hints and some time to think about it more deeply, and maybe give them a few more examples to do depending on time and number of previous examples. After they have figured out the pattern, I would ask them if they knew why it worked to add (b/2)^2, and why they need to both add and subtract it. Then, we would go into the second part of the activity, which would require manipulatives. They would get into partners and model different completing the square problems with algebra tiles, and explain both verbally and in writing why adding (and subtracting) (b/2)^2 works to complete the square. I would probably also ask if you could “complete the cube,” and have them justify their answer as an elaborate. green line

B1. How can this topic be used in your students’ future courses in mathematics?

Completing the square is a fairly nifty trick that pops up a decent bit in Calculus 2, particularly in taking integrals of trig functions. Since they need to be in the specific form of (x+a)^2, or some variation thereof. If a student didn’t know how to complete the square, they would get stuck on how to integrate that type of problem. In addition, completing the square is useful when you want to transform a quadratic equation into the vertex form of the equation. It also could have applications in partial fraction decomposition if you are trying to simplify before doing the partial fraction decomposition, and has applications in Laplace transforms through partial fraction decomposition. It is also helpful in solving quadratic equations if it’s not obviously factorable and the quadratic equation is useful but can be tedious to use, especially if you don’t remember how to simplify radicals.

 

green line

B2. How does this topic extend what your students have learned in previous courses?

Students typically learn, or at least have heard of, the quadratic formula before they have learned completing the square. Completing the square can be used to derive the quadratic formula, so they get more of an idea of why it works as opposed to just memorizing the formula. Also, if a student is having trouble remembering what exactly the quadratic formula is, they can use completing the square to re-derive it fairly quickly. Also, it ties the concepts of what they are learning together more so they are more likely to remember what they learned and less likely to see the quadratic formula and completing the square as two random pieces of mathematical information. Depending on the grade level, completing the square can also extend the idea of rewriting equations. They might have been familiar with turning point-slope form into slope intercept form, but not turning what is sometimes the standard form (the quadratic form) into the vertex form of the equation.

 

Sum of Three Cubes

I now have a new example of an existence proof to show my students.

Last year, mathematicians Andrew Booker and Andrew Sutherland found solutions to the following two equations: x^3 + y^3 + z^3 = 33 and x^3 + y^3 + z^3 = 42. The first was found by Booker alone; the latter was found by the collaboration of both mathematicians. These deceptively simple-looking equations were cracked with a lot of math and a lot of computational firepower. The solutions:

(8,866,128,975,287,528)³ + (–8,778,405,442,862,239)³ + (–2,736,111,468,807,040)³ = 33

$latex (–80,538,738,812,075,974)3 + 80,435,758,145,817,5153 + 12,602,123,297,335,6313 = 42$

At the time of this writing, that settles the existence of solutions of x^3 + y^3 + z^3 = n for all positive integers n less than 100. For now, the smallest value of n for which the existence of a solution is not known is n = 114.

For further reference, including links to the original articles by Booker and then Booker and Sutherland, please see:

Goodbye Aberration: Physicist Solves 2,000-Year-Old Optical Problem

This was a nice write-up (with some entertaining interspersed snark) of the solution of the the Wasserman-Wolf problem concerning the construction of a perfect lens (like a camera lens). Some quotes:

[L]enses are made from spherical surfaces. The problem arises when light rays outside the center of the lens or hitting at an angle can’t be focused at the desired distance in a point because of differences in refraction.

Which makes the center of the image sharper than the corners…

In a 1949 article published in the Royal Society Proceedings, Wasserman and Wolf formulated the problem—how to design a lens without spherical aberration—in an analytical way, and it has since been known as the Wasserman-Wolf problem…

The problem was solved in 2018 by doctoral students in Mexico. For those fluent in Spanish, the university press release can be found here. As an added bonus, here’s the answer: