Solving a Math Competition Problem: Part 5

This series of posts concerns solving the following problem from the 2016 University of Maryland High School Mathematics Competition.

A sphere is divided into regions by 9 planes that are passing through its center. What is the largest possible number of regions that are created on its surface?

a. 2^8

b. 2^9

c. 81

d. 76

e. 74

This series was actually written by my friend Jeff Cagle, department head for mathematics at Chapelgate Christian Academy, as he tried technique after technique to solve this problem. I thought that his resolution to the problem was an excellent example of the process of mathematical problem-solving, and (with his permission) I am posting the process of his solution here. (For the record, I have no doubt that I would not have been able to solve this problem.)

OK, so I wanted to prove that each region would be a triangle. So I decided to project the sphere onto a plane.

For a while, I toyed with the situation where we have

  • Plane 1 – equator (this always happens: Just make plane 1 the equator) 𝑃1(0𝑁, 0𝐸).
  • Plane 2 – Prime Meridian 𝑃2(90𝑁, 0𝐸)
  • Plane 3 – Intl Date Line 𝑃3(90𝑁, 90𝐸)
  • Plane 4 – at an angle to all of those 𝑃4(45𝑁, 45𝐸)

Here is our mapping with P1, P2, and P3 on it:

Now, how to represent P4? Aha! The inside of the unit circle is the southern hemisphere, and the outside is the northern. P4 must hit the equator a two points 180 degrees apart, go inside the southern hemisphere, and then outside to the northern. Thus:

The white region is a NONtriangular region created by the intersection of four planes. These are strange-looking regions, and I spent a long time – several days – vainly trying to count max regions created when I added P5, P6 etc. But one thing was clear: not all of the regions are triangular, nor can they be. For if a plane (say P4) cuts through a triangular region, it will create a new triangular region and a non-triangular β€œquadrilateral”, as in the figure below. So counting triangles from points is NOT the solution here!

One thought on “Solving a Math Competition Problem: Part 5

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.