Engaging students: Parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Lisa Sun. Her topic, from Algebra II: parabolas.

green line

How has this topic appeared in high culture?

Parabola is a special curve, shaped like an arch. Any point on a parabola is at an equal distance from a fixed point (the focus) and a fixed straight line (the directrix). Today, I will be presenting the parabolas’ unique shape to the class. Parabolas are everywhere in our society today. Students just don’t know it yet because no one has informed them. Parabolic structures can be seen in buildings, mosaic art, bridges, and many more. One that I’m going to share with the class is going to be roller coasters. Similar to this image below:

rollercoaster

This specific roller coaster is The Behemoth. It is a steel coaster located in Canada’s Wonderland in Vaughan, Ontario, Canada. I will first present this photo to the class and ask the following:

  • What do you notice that’s repeating in this roller coaster?
  • Do you think you’ve seen this similar structure anywhere else? Where?

–Present definition of Parabola–

  • Does this roller coaster have any parabolic structure? Where?

With these guiding questions, I want the students to be familiar with how a parabola looks like and that we can see them in our real world other than school.

green line

How has this topic appeared in the news?

https://www.sciencedaily.com/releases/2016/07/160713143146.htm

This link above is a recent article from Science News on how an engineer from the University of Warwick discovered how to build bridges and buildings to enhance the safety and long durability without the need for repair or restructuring by the use of inverted parabolas. Using inverted parabolas and a design process called “form finding”, engineers will be able to take away the main points of weakness in structures. I believe this is a remarkable discovery that must be shared with students. Math is truly used in our everyday life and can definitely benefit the society today by how fast our technology is advancing.

green line

How can technology be used to effectively engage students with this topic?

Prezi favors visual learning and works similar to a graphic organizer or a mind map. It helps students to explore a canvas of small ideas then turning it into a bigger picture or vice versa. Prezi is a great tool to maintain an interactive classroom and creates stunning visual impact on students keeping them engaged in the lecture.

http://www.bbcactive.com/BBCActiveIdeasandResources/UsingPreziInEducation.aspx

Above is a link of a Prezi presentation of parabolas in roller coasters. This is a great example as to what I would create for my students to provide them the information of a parabola.

 

Behemoth

https://www.mathsisfun.com/definitions/parabola.html

https://www.sciencedaily.com/releases/2016/07/160713143146.htm

https://prezi.com/pwkzfddbu4bu/parabolas-in-roller-coasters/

http://www.bbcactive.com/BBCActiveIdeasandResources/UsingPreziInEducation.aspx

 

 

Quadratic Fire Drills

Quadratic

Engaging students: Graphing parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Irene Ogeto. Her topic, from Algebra: graphing parabolas.

green line

B2. How does this topic extend what your students should have learned in previous courses?

In previous courses, students should have learned about linear functions of the form y = mx + b. Parabolas are functions of the form y = a(x-h) + k. Graphing parabolas extends their thinking because it allows to students to see the graph of a function that is different from the graph of a line. Students can explore the similarities and differences between linear functions and quadratic functions. Students can apply the same logic they used when graphing linear functions by making a table and use the points to plot the graph. Students can use the graph of parabolas to determine the equation of the quadratic function. Students can apply transformations of graphs such as reflecting, stretching or compressing to parabolic functions as well. Graphing parabolas allows students to explore concepts they previously learned such as parent functions, y-intercepts, x-intercepts, and symmetry.

green line

C2. How has this topic appeared in high culture (art, classical music, theatre, etc.)?

Parabolic curves are all around us in buildings, churches, restaurants, homes, schools and other places. Parabolas are apparent in numerous places in architecture. One example where parabolic curves can be found in architecture is in suspension bridges such as the Brooklyn Bridge in New York, the Golden Gate Bridge in California, or the George Washington Bridge in New Jersey. Suspension bridges are mainly used to carry loads over a long distance and most suspension bridges are lengthy in distance. In suspension bridges, cables, ropes or chains are suspended throughout the road. The cables under tension form the parabolic curve. The towers and hangers are used to support the cables throughout the bridge. Seeing how parabolas appear in high culture will allow students to make a connection between math and the things that may see around them. Hopefully the students can see that math, specifically parabolas in this case are not only found in the classroom.

bridge1 bridge2

 

green line

E1. How can technology (YouTube, Khan Academy [khanacademy.org], VI Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

This YouTube video, “Water Slide Stunt,” is a great way to introduce students to graphing parabolas. It allows students to see the curve that parabolic functions make. In addition, it gives students an example of a real-world situation where projectile motion and parabolic functions can be seen. This video can be used at the beginning of a lesson on graphing parabolas. This video is engaging because it gets the students thinking about projectile motion and it shows how math can be related to different things in our society. In addition, students can also look up this video on YouTube on their own time and share with others.

 

References:

https://www.youtube.com/watch?v=3wAjpMP5eyo

http://science.howstuffworks.com/engineering/civil/bridge6.htm

Engaging students: Fitting data to a quadratic function

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Loc Nguyen. His topic, from Algebra: fitting data to a quadratic function.

green line

A1. What interesting (i.e., uncontrived) word problems using this topic can your students do now?

To engage students on this topic, I will provide them the word problems in the real life so they can see the usefulness of quadratic regression in predictive purposes. The question to the problem is about the estimated numbers of AIDS cases that can be diagnosed in 2006. The data only show from 1999 to 2003. This will be students’ job to figure out the prediction. I will provide the instructions for this task and I will also walk them through the process of finding the best curve that fit the given data. The best fit to the curve will give us the estimation. Here is how the instruction looks like:

quadraticdata

In the end, students will be able to acquire the parabola curve which fit the given data. By letting students work through the real life problems, they will be able to understand why mathematics is important and see how this concept is useful in their lives.

green line

B2. How does this topic extend what your students should have learned in previous courses?

Before getting into this topic, the students should have eventually been familiar with the word “quadratic” such as quadratic function, quadratic equation. Students should have been taught when the curve concaves up or down. In the previous course, students would be given the quadratic functions and they would be asked to find the maxima, minima, or intercepts. Or they would be asked to solve the quadratic equation and find the roots. The universal properties of quadratic function never change. When students encountered the concept of quadratic regression, they would not be so overwhelmed with the topic. There is no new rule or properties. The process is just backward. The Instead of having the given function, in this case, students will have to find the function based on the given data so that the curve would fit the data. Their prior knowledge is really essential for this topic, and this would help them to understand the concept of quadratic regression easier.

 

 

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

At the beginning of the class, I would like to show students the short video of football incident.

This incident was really interesting. The Titans punt went so high so that it hit the scoreboard in Cowboys stadium. Surprisingly, this was Cowboy’s new stadium. There were many questions about what was going on when the architecture built this stadium. It was supposed to be great. This incident revealed the errors in predicting the height of the scoreboard. The data they collected in past year may have been incorrect. I want to incorporate this incident into the concept of quadratic regression. I will pose several questions such as:

Was Titan football punter really that powerful? What was really wrong in this situation?

When the architectures built this stadium, did they ever think that the ball would reach the ceiling?

How come did the architectures fail to measure the height of the ceiling? Did they just assume the height of the stadium tall enough?

What was the path of the ball?

Students will eagerly respond to these questions, and I will slowly bring in the important of quadratic regression. I will then explain how quadratic regression helps us to predict the height based on collected data from past years.

 

References:

https://www.youtube.com/watch?v=V4N3LEi5a1Q

http://www.algebralab.org/Word/Word.aspx?file=Algebra_QuadraticRegression.xml

 

 

High-pointing a football?

Today is one of the high points of the American sports calendar: the AFC and NFC championship games to determine who plays in the Super Bowl.

A major pet peeve of mine while watching sports on TV: football announcers who “explain” that a receiver made a great reception because “he caught the ball at its highest point.”

Ignoring the effects of air resistance, the trajectory of a thrown football is parabolic, and the ball is the essentially the same height above the ground when it is either thrown or caught. (Yes, there might be a difference of at most three feet, but that’s negligible compared to the distance that a football is typically thrown.) Therefore, a football reaches the highest point of its trajectory approximately halfway between the quarterback and the receiver.

And anyone who can catch the ball that far above the ground should be immediately tested for steroids.

Engaging students: Graphing parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Tiffany Wilhoit. Her topic, from Algebra: graphing parabolas.

green line

How did people’s conception of this topic change over time?

 

The parabola has been around for a long time! Menaechmus (380 BC-320 BC) was likely the first person to have found the parabola. Therefore, the parabola has been around since the ancient Greek times. However, it wasn’t until around a century later that Apollonius gave the parabola its name. Pappus (290-350) is the mathematician who discovered the focus and directrix of the parabola, and their given relation. One of the most famous mathematicians to contribute to the study of parabolas was Galileo. He determined that objects falling due to gravity fall in parabolic pathways, since gravity has a constant acceleration. Later, in the 17th century, many mathematicians studied properties of the parabola. Gregory and Newton discovered that parabolas cause rays of light to meet at a focus. While Newton opted out of using parabolic mirrors for his first telescope, most modern reflecting telescopes use them. Mathematicians have been studying parabolas for thousands of years, and have discovered many interesting properties of the parabola.

 

 

green line

How could you as a teacher create an activity or project that involves your topic?

 

A fun activity to set up for your students will include several boxes and balls, for a smaller set up, you can use solo cups and ping pong balls. Divide the class into groups, and give each group a set of boxes and balls. First, have the students set up a tower(s) with the boxes. The students will now attempt to knock the boxes down using the balls. The students can map out the parabolic curve showing the path they want to take. By changing the distance from the student throwing the ball and the boxes, the students will be able to see how the curve changes. If students have the tendency to throw the ball straight instead of in the shape of a parabola, have a member of the group stand between the thrower and the boxes. This will force the ball to be thrown over the student’s head, resulting in the parabolic curve. The students can also see what happens to the curve depending on where the student stands between the thrower and boxes. In order for the students to make a positive parabolic curve, have them throw the ball underhanded. This activity will engage the students by getting them involved and active, plus they will have some fun too! (To start off with, you can show the video from part E1, since the students are playing a real life version of Angry Birds!)

 

 

green line

How can technology be used to effectively engage students with this topic?

 

A great video to show students before studying parabolas can be found on YouTube:

The video uses the popular game Angry Birds to introduce parabolic graphs. First, the video shows the bird flying a parabolic path, but the bird misses the pig. The video goes on to explain why the pig can’t be hit. It does a good job of explaining what a parabola is, why the first parabolic curve would not allow the bird to hit the pig, and how to change the curve to line up the path of the bird to the pig. This video would be interesting to the students, because a majority of the class (if not all) will know the game, and most have played the game! The video goes even further by encouraging students to look for parabolas in their lives. It even gives other examples such as arches and basketball. This will get the students thinking about parabolas outside of the classroom. (This video would be perfect to show before the students try their own version of Angry Birds discussed in part A2)

 

Resources:

 

Youtube.com/watch?v=bsYLPIXI7VQ

Parabolaonline.tripod.com/history.html

http://www-history.mcs.st-and.ac.uk/Curves/Parabola.html

 

 

 

Engaging students: Parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Banner Tuerck. His topic, from Precalculus: finding the equation of a parabola from the focus and directrix.

green line

An interesting way to present the mathematics behind parabolas and their focus points is through the applications it has in science present in our everyday lives. http://spacemath.gsfc.nasa.gov/IRAD/IRAD-4.pdf

The above link includes a great engagement activity for students to do as a group activity. The first exercise presented involves the students in the design of a parabolic dish after observing the properties of a satellite dish with a radio receiver (located at the focus). Once the students have completed the design of the parabolic dish the instructor could then use the second half of the pdf from the link as an elaboration activity. The instructor could either keep the students in the groups or have them work the problems individually. Nevertheless, the second activity would be for the students to work problems one and two, which deal with aiding a bird watcher and a hobbiest in determining the focus points in order to design their parabolically shaped tools. The last problems are excellent real world examples of why one would need to know and apply the mathematics for parabolas. This will encourage students to view everyday objects with a more mathematical respect.

 

green line

The understanding of the relationship between the focus point and the directrix of a standard parabola is fundamental when students extend their mathematical and science education in post-secondary courses. For example, when students reach multivariable calculus they will graph and study the properties of conic sections on a three dimensional scale. With respect to this topic the students can apply their preexisting knowledge of two-dimensional parabolas to the paraboloids presented in this course. Furthermore, if students from a pre-calculus high school course were to not keep with the theoretical study of mathematics they could benefit greatly from this topic in careers such as architecture, art, or graphic design.

 

green line

As an instructor of a pre-calculus course one has many technological resources to use in order to construct an elaborate lesson on the directrix and focus of a parabola. For example, modern graphing calculators allow instructors to link their calculator to a projector and show the entire class various parabolas in order to further visualize the changing distances to these specific points. Furthermore, I believe a unique homework assignment would be for students to graph given quadratic equations with an online resource such as http://www.wolframalpha.com/. This assignment would also be a great review of how to apply the distance formula. I recommend having the students check that the points on the parabola are equidistant apart from the focus and the directrix they have already found after graphing and computing. Another idea is requesting (for full credit of the assignment) the students use the following link: https://www.khanacademy.org/math/algebra2/conics_precalc/parabolas_precalc/v/parabola-focus-and-directrix-1

to facilitate their understanding of the definition of a parabola as well as the importance of the focus point and directrix line. This is a way to involve technology while simultaneously ensuring that students review key aspects of the lesson after it was given by the instructor during class time.

References

http://spacemath.gsfc.nasa.gov/IRAD/IRAD-4.pdf

http://www.wolframalpha.com/.

https://www.khanacademy.org/math/algebra2/conics_precalc/parabolas_precalc/v/parabola-focus-and-directrix-1

 

 

 

Engaging students: Parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Christine Gines. Her topic, from Precalculus: finding the equation of a parabola from the focus and directrix.

green line

How can technology be used to effectively engage students with this topic?

 

Beginning the class with a short clip involving a certain topic is a great way to start and engage a classroom for several reasons. First of all, videos can achieve things that a teacher can’t in a limited classroom. Also, videos save preparation time for the teacher and students just like watching videos in general! Youtube.com is, if not the, one of the largest video sharing websites. You can find videos on just about any topic and for this reason, I recommend it.

 

On youtube I found a great introductory video parabola involving the focus of a parabola. This video does a fantastic job of engaging viewers by demonstrating the effects of concentrated sunlight by melting metal, stone, and setting wood on fire. Not only does this video grasp students’ attention, but it also raises a sense of curiosity by not explaining what is happening. After watching, students will ideally be eager to find answers at which point the teacher could introduce the topic and let students explore their questions.

 

 

green line

How could you as a teacher create an activity or project that involves your topic?

Deriving the equation of a parabola may seem like a procedural concept, but it doesn’t have to be. The following activity is an example of how you can let students explore this concept visually and kinesthetically.

The only materials you will need are wax paper and pencils for each student. The instructions are as follows:

  1. Draw a line about 2cm above the edge of the wax paper.
  2. Fix a point above the line
  3. Draw several point on the fixed line
  4. Fold each point on the line so that it touches the fixed point above the line

 

This is what the activity should look like:

This activity lets students explore the relationship between the directrix and the focus. A good follow-up to this activity is a peer-to-peer discussion of why a parabola was created. Ask them questions like, “Where is the vertex of this parabola in relation to the line and fixed point?” or “Can you find a relationship between this activity and the video that melted stone?” The activity benefits all types of learners and challenges students to find a deeper understanding, rather than simply following algebraic steps

green line

How did people’s conception of this topic change over time?

 

The discovery of the conics section can be traced back to Ancient Greece, when Menaechmus (pupil of Eudoxus and tutor of Alexander the Great) was puzzled with mathematical problem of doubling a cube. While attempting to solve this problem, Menaechmus discovered the conics section. This happened around 360-350 B.C. He was also the first to demonstrate that parabolas can be obtained by cutting a cone in a plane that was not parallel to the base, like so:

conicsection

Parabolas at this time were only a mathematical concept to be studied and not put to use in the real world. It wasn’t until Pappus came along and discovered the focus and directrix property, that parabolas were noticed for their practical use. This discovery led to many applications of parabolas. Just a few examples include telescopes, satellites, microphones, and even bridges.

 

 

Engaging students: Parabolas

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Claire McMahon. Her topic, from Precalculus: parabolas.

green line

The parabola took a long time to get to us and took a few thinkers to really get the idea down.  This website that I found really nailed the dates and also simplified the rational that led up to the parabola as we know it today.  The history of the parabola is as follows:

The parabola was explored by Menaechmus (380 BC to 320 BC), who was a pupil of Plato and Eudoxus. He was trying to duplicate the cube by finding the side of the cube that has an area double the cube. Instead, Menaechmus solved it by finding the intersection of the two parabolas x2=y and y2=2x. Euclid (325 BC to 265 BC) wrote about the parabola. Apollonius (262 BC to 190 BC) named the parabola. Pappus (290 to 350) considered the focus and directrix of the parabola. Pascal (1623 to 1662) considered the parabola as a projection of a circle. Galileo (1564 to 1642) showed that projectiles falling under uniform gravity follow parabolic paths. Gregory (1638 to 1675) and Newton (1643 to 1727) considered the properties of a parabola.

This really got me to thinking what it really took to figure out the derivation of the formula and even for the graph of the parabola.  I find it interesting that the idea had to travel through seven genius minds to come to all of the properties that the parabola holds to this day.

green line

This same website led me to another use of the parabola, other than to describe a projectile’s path.  The use of suspension bridges relies heavily on a parabolic model.  Other parabolic models would include the satellite dishes and even all types of lights.  Have you ever thought that every single place that light bulb reflects is a reflection off a point from the focus to the parabola to create your beam of light!!  Pretty cool!!  So you might ask why do I need to know anything about parabolas?  There is your answer; it’s used in everyday life.  Here are a couple of examples from the website that I found interesting:

One of the “real world” applications of parabolas involves the concept of a 3D parabolic reflector in which a parabola is revolved about its axis (the line segment joining the vertex and focus). The shape of car headlights, mirrors in reflecting telescopes, and television and radio antennae (such as the one below) all utilize this property.

Antenna of a Radio Telescope

All incoming rays parallel to the axis of the parabola are reflected through the focus.

Flashlights & Headlights

In terms of a car headlight, this property is used to reflect the light rays emanating from the focus of the parabola (where the actual light bulb is located) in parallel rays.

Here are the specs on the suspension bridge:

Hold up a chain by both ends and you’ll get a curve. What kind of curve is it? You might say it is a parabola – Galileo Galili believed it was a parabola. Yet, Galileo was wrong!!!! That curve is NOT a parabola. It is a catenary.It makes sense that you would think that the curved chain is a parabola. Both the catenary and the parabola have similar properties. Both curves have a single low point. They both have a vertical line of symmetry, they at least appear to be continuous and differentiable throughout, and the slope is steeper as we move away from the low point, but it never becomes vertical.So, how is the curve of the cable in a suspension bridge a parabola? When the structure is being built and the main cables are attached to the towers, the curve is a catenary. But when the cables are attached to the deck with hangers, it is no longer a catenary. The curve of the cables become the curve of a parabola. Unlike the catenary, which is curving under its own weight, the parabola is curving not just under its own weight, but also curving from holding up the weight of the deck. The cable of a suspension bridge is under tension from holding up the bridge.Therefore, the cables of a suspension bridge is a parabola, because the weight of the deck is equally distributed on the curve.

I never really knew that there was a difference between the two and now I know that there are certain properties that made it down through the ages that hold true today.  This was a very enlightening subject matter.

Website used: http://www.carondelet.pvt.k12.ca.us/Family/Math/03210/page2.htm