Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Saundra Francis. Her topic, from Algebra: graphs of linear equations.

green line

B1. How can this topic be used in your students’ future courses in mathematics and science?

Learning how to graph linear equations is the basis for many topics that students will learn later in Algebra and future mathematics and science courses. Students will now be able to solve word problems using graphs to model the situation describe in the problem. Being able to graph linear equations will help students graph non-linear equations since they will be able to apply the steps they learn on how to graph to different types of equations, Students will also be able to graph inequalities to find solutions for an equation since graphing equations is the first step in graphing inequalities. Another application of graphing linear equations is when students need to make graphs when completing science labs, many times students need to graph their data collected and find an equation that represents the data.

green line

C3. How has this topic appeared in the news?

Graphs of linear equations are displayed in the markets sections on The New York Times. Segments of different linear equations can be put together match the graphs that display the rise and fall of different markets and stocks. Time is displayed on the x-axis while the y-axis list the price of the stock. The slope of the line is the percent change in the price of the stock and can be positive or negative depending if the price rose or fell. The y-intercept would be the price that the stock or market was at before the percent change. This will engage students because it is an example of how graphs of linear equations is displayed in the real world and they get a chance to see how they can use this concept in the future. This could also be made into an activity where students discover the linear equations that are combined to make a certain market or stock graph.

green line

D1. What interesting things can you say about the people who contributed to the discovery and/or development of this topic?

René Descartes was born in 1596 and was a French scientist, philosopher, and mathematician. He is thought to be the father of modern philosophy. Descartes started his education at age nine and by the time he was twenty-two he had earned a degree in law. Then Descartes tried to understand the natural world using mathematics and logic, which is when he discovered how to visually represent algebraic equations. Descartes was the first to use a coordinate system to display algebraic equations. In 1637 Descartes published La Géométrie, which was where he first showed how to graph equations. He linked geometry and algebra in order to represent equations visually. While thinking about the nature of knowledge and existence Descartes stated, “I think; therefore I am”, which is one of his most famous thoughts. Students will gain interest in graphing equations when they are told about Descartes since he was an interesting person and he discovered things not only in the field of mathematics but philosophy too.

References
https://www.biography.com/people/ren-descartes-37613
http://www.classzone.com/books/algebra_1/page_build.cfm?content=links_app4_ch4&ch=4
https://markets.on.nytimes.com/research/markets/overview/overview.asp

 

 

Engaging students: Graphing inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Lyndi Mays. Her topic, from Algebra: graphing inequalities.

green line

A1. Once students get to the point where they’re graphing inequalities, they should have a pretty good understanding of how to graph regular functions. I’ve noticed that where students have issues graphing inequalities is knowing which side of the graph should be shaded. Students get confused thinking that the graph should be shaded depending on the direction of the line instead of checking specific points. One activity that I would like to try in the classroom is giving them a worksheet where they graph inequalities on a small graph and when all the little graphs are graphed and shaded it creates a mosaic picture. I feel like there needs to be some sort of pattern or picture so that the students are sure that they’re doing the questions correctly. Another reason I like this activity is because it reaches the intelligence of artistic students. It’s not often that a math lesson can reach artistic intelligences.

 

green line

C1. One thing the students might find interesting about linear inequalities is that they appeared in the popular TV series, Numbers. In this particular episode, there is a blackout from attacks on an electrical substation. In order to figure out where the attack was located they mapped out where the blackouts were happening. Once they filled in all the different places that were blacking out, they realized it was one big section. Then they drew lines as if the map was on the coordinate plane. From there they are able to target the location where the attack happened.
Students also might be interested in knowing that this is also the way that policeman use to locate a cell phone. They mark the three closest cell towers that the cell phone pinged off of and are then able to draw a section and use linear functions to find the cell phone.

 

green line

E1. https://us.sofatutor.com/mathematics/videos/graphing-linear-inequalities

This video shows students how to solve for a variable and graph with inequalities. I liked the way it was set up because it was a word problem set up like a story and then solved. I know that students can become intimidated by having to learn new material and then having to apply it to a word problem. But this video kind of walks them through it which I believe could be helpful. Another thing was that the thing we were solving for was very realistic and might help students see why they would need to know how to graph linear equations in the future. The video also showed what x represented (cookies) and what y represented (lemonade). This lets the students know that x and y actually mean something instead of just being an arbitrary variable. I also liked that the video checked for specific points for the shading portion since many students forget that that’s a possibility and end up guessing where to shade.

 

References:
Sayfan, Sayfan. Graphing Linear Inequalities. https://us.sofatutor.com/mathematics/videos/graphing-linear-inequalities.

 

 

 

Engaging students: Slope-intercept form of a line

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Jessica Williams. Her topic, from Algebra I: the point-slope intercept form of a line.

green line

A.2 How could you as a teacher create an activity or project that involves your topic?

In order to teach a lesson regarding slope intercept form of a line, I believe it is crucial to use visual learning to really open the student’s minds to the concept. Prior to this lesson, students should know how to find the slope of a line. I would provide each student with a piece of graph paper and small square deli sheet paper. I would have them fold their deli sheet paper into half corner to corner/triangle way). I would ask each student to put the triangle anywhere on the graph so that it passes through the x and the y-axis. Then I will ask the students to trace the side of the triangle and to find two points that are on that line. For the next step, each student will find the slope of the line they created. Once the students have discovered their slope, I will ask each of them to continue their line further using the slope they found. I will ask a few students to show theirs as an example (picking the one who went through the origin and one who did not). I will scaffold the students into asking what the difference would look like in a formula if you go through the origin or if you go through (0,4) or (0,-3) and so on. Eventually the students will come to the conclusion how the place where their line crosses the y-axis is their y intercept. Lastly, each student will be able to write their equation of the line they specifically created. I will then introduce the y=mx+b formula to them and show how the discovery they found is that exact formula. This is a great way to allow the students to work hands on with the material and have their own individual accountability for the concept. They will have the pride of knowing that they learned the slope intercept formula of a line on their own.

 

green line

E.1 How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

Graphing calculators are a very important aspect of teaching slope-intercept form of a line. It allows the students to visually see where the y-intercept is and what the slope is. Also, another good program to use is desmos. It allows the students to see the graph on the big screen and you can put multiple graphs on the screen at one time to see the affects that the different slopes and y intercept have on the graph. This leads students into learning about transformations of linear functions. Also, the teacher can provide the students with a graph, with no points labeled, and ask them to find the equation of the line on the screen. This could lead into a fun group activity/relay race of who can write the formula of the graph in the quickest time. Also, khan academy has a graphing program where the students are asked to create the graph for a specific equation. This allows the students to practice their graphing abilities and truly master the concept at home. To engage the students, you could also use Kahoot to practice vocabulary. For Kahoot quizzes, you can set the time for any amount up to 2 minutes, so you could throw a few formula questions in their as well. It is an engaging way to have each student actively involved and practicing his or her vocabulary.

green line

B1. How can this topic be used in your students’ future courses in mathematics or science?

Learning slope intercept form is very important for the success of their future courses and real world problems. Linear equations are found all over the world in different jobs, art, etc. By mastering this concept, it is easier for students to visualize what the graph of a specific equation will look like, without actually having to graph it. The students will understand that the b in y=mx+b is the y-intercept and they will know how steep the graph will be depending on the value of m. Mastering this concept will better prepare them to lead into quadratic equations and eventually cubic. Slope intercept form is the beginning of what is to come in the graphing world. Once you grasp the concept of how to identify what the graph will look like, it is easier to introduce the students to a graph with a higher degree. It will be easier to explain how y=mx+b is for linear graphs because it is increases or decreases at a constant rate. You could start by asking,
1.What about if we raise the degree of the graph to x^2?
2.What will happen to the graph?
3.Why do you think this will happen, can you explain?
4.What does squaring the x value mean?
It really just prepares the students for real world applications as well. When they are presented a problem in real life, for example, the student is throwing a bday party and has $100 dollars to go to the skating rink. If they have to spend $20 on pizza and each friend costs $10 to take, how many friends can you take? Linear equations are used every day, and it truly helps each one of the students.

References:
https://www.khanacademy.org/math/algebra/two-var-linear-equations/graphing-slope-intercept-equations/e/graph-from-slope-intercept-equation

 

 

Engaging students: Finding x- and y-intercepts

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Deetria Bowser. Her topic, from Algebra: finding x- and y-intercepts. Unlike most student submissions, Maranda’s idea answers three different questions at once.

green line

 

E1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

One example of an engaging form of technology that involves finding x- and y-intercepts of lines is mangahigh.com. Under the algebra section, there is a tab for finding x and y intercepts which once clicked provides an option to start a game (“Algebra.”). In this game, the student is expected to look at lines and quickly decipher what is known about the x and y intercepts of the line in question. Before the game begins, the student is able to choose the difficulty of the game as well as the number of questions. After the game is completed students are able to review their answers. Implementing this website into the classroom will help students gain quickness in identifying x and y intercepts. Additionally, this game is also a quick and fun way to evaluate students understanding of x and y intercepts, without forcing them to take a quiz.

green lineD1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic? (You might want to consult Math Through The Ages.)

The topic of x and y intercepts falls under a much broader topic called analytical geometry.The article “Analytic geometry” defines analytical geometry as “[a] mathematical subject in which algebraic symbolism and methods are used to represent and solve problems in geometry” (D’Souza). One of the people who discovered this topic was René Descartes. René Descartes was actually a french modern philosopher who also made discoveries in the realms of science as well as mathematics. Descartes “dismissed apparent knowledge derived from authority,” meaning that he made his discoveries based on what he thought rather than taking ideas from scientists, philosophers and mathematicians (Watson). He discovered analytical mathematics (along with Fermat) in the 1630s (D’Souza). He also “he stressed the need to consider general algebraic curves—graphs of polynomial equations in x and y of all degrees” (D’Souza). Mentioning Descartes in class, and explaining his accomplishments in Mathematics as well as modern philosophy and science, will encourage students to realize that they can succeed in more than one subject . Also, Descartes can be used as an influence in the building of ideas in the classroom, since he did not just accept ideas already created.

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

The topic of x and y intercepts appeared on a “pop culture blog” called the comeback.com. In an article posted in November 2016, a former UCLA and current Cleveland Indians baseball player named Trevor Bauer helped one of his fans with her math homework (Blazer). This article describes a girl asking Bauer for help determining the slope of a line and the y – intercepts via Twitter. Her specific question involves the equation 2y=x (Blazer). He then explains that “for every 1 unit on the x axis go 2 units on the y axis. y intercept is where it crosses the y axis. Make y 0 and figure x” (Blazer). Since Bauer is a professional baseball player, he already has a great influence over people. Showing students this article about Bauer will show students that even people who play baseball for a living still have the knowledge of Algebra.

 

References
“Algebra.” Mangahigh.com – Algebra,
http://www.mangahigh.com/en-us/math_games/algebra/straight_line_graphs/find_the_x_and_y_intercepts_of_lines. Accessed 15 Sept. 2017.

Blazer, Sam, et al. “Trevor Bauer helped a fan do their math homework on Twitter.” The
Comeback, 13 Nov. 2016,
thecomeback.com/mlb/trevor-bauer-twitter-math-homework.html. Accessed 15 Sept.
2017.

D’Souza, Harry Joseph, and Robert Alan Bix. “Analytic geometry.” Encyclopædia Britannica,
Encyclopædia Britannica, inc., 6 June 2016,
http://www.britannica.com/topic/analytic-geometry. Accessed 15 Sept. 2017.

Watson, Richard A. “René Descartes.” Encyclopædia Britannica, Encyclopædia Britannica, inc.,
27 Jan. 2017, http://www.britannica.com/biography/Rene-Descartes. Accessed 15 Sept. 2017.

Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Anna Park. Her topic, from Algebra: graphs of linear equations.

green line

How could you as a teacher create an activity or project that involves your topic?

  • Have the students enter the room with all of the desks and chairs to the wall, to create a clear floor. On the floor, put 2 long pieces of duct tape that represent the x and y-axis. Have the students get into groups of 3 or 4 and on the board put up a linear equation. One of the students will stand on the Y-axis and will represent the point of the Y-Intercept. The rest of the students have to represent the slope of the line. The students will be able to see if they are graphing the equation right based on how they form the line. This way the students will be able to participate with each other and get immediate feedback. Have the remaining groups of students, those not participating in the current equation, graph the line on a piece of paper that the other group is representing for them. By the end of the engage, students will have a full paper of linear equation examples. The teacher can make it harder by telling the students to make adjustments like changing the y intercept but keeping the slope the same. Or have two groups race at once to see who can physically graph the equation the fastest. Because there is only one “graph” on the floor, have each group go separately and time each group.
  • Have the students put their desks into rows of even numbers. Each group should have between 4 and 5 students. On the wall or white board the teacher has an empty, laminated graph. The teacher will have one group go at a time. The teacher will give the group a linear equation and the student’s have to finish graphing the equation as fast as possible. Each group is given one marker, once the equation is given the first student runs up to the graph and will graph ONLY ONE point. The first student runs back to the second student and hands the marker off to them. That student runs up to the board and marks another point for that graph. The graph is completed once all points are on the graph, the x and y intercepts being the most important. If there are two laminated graphs on the board two groups can go at one time to compete against the other. Similar to the first engage, students will have multiple empty graphs on a sheet of paper that they need to fill out during the whole engage. This activity also gives the students immediate feedback.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Sir William Rowan Hamilton was an Irish mathematician who lived to be 60 years old. Hamilton invented linear equations in 1843. At age 13 he could already speak 13 languages and at the age of 22 he was a professor at the University of Dublin. He also invented quaternions, which are equations that help extend complex numbers. A complex number of the form w + xi + yj + zk, where wxyz are real numbers and ijk are imaginary units that satisfy certain conditions. Hamilton was an Irish physicist, mathematician and astronomer. Hamilton has a paper written over fluctuating functions and solving equations of the 5th degree. He is celebrated in Ireland for being their leading scientist, and through the years he has been celebrated even more because of Ireland’s appreciation of their scientific heritage.

 

 

 

green line

Culture: How has this topic appeared in pop culture?

 

An online video game called “Rescue the Zogs” is a fun game for anyone to play. In order for the player to rescue the zogs, they have to identify the linear equation that the zogs are on. This video game is found on mathplayground.com.

 

References

https://www.teachingchannel.org/videos/graphing-linear-equations-lesson

 

https://www.reference.com/math/invented-linear-equations-ad360b1f0e2b43b8#

 

https://en.wikipedia.org/wiki/William_Rowan_Hamilton

 

http://www.mathplayground.com/SaveTheZogs/SaveTheZogs.html

 

 

Engaging students: Solving systems of linear inequalities

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Heidee Nicoll. Her topic, from Algebra: solving linear systems of inequalities.

green line

How could you as a teacher create an activity or project that involves your topic?

I found a fun activity on a high school math teacher’s blog that makes solving systems of linear inequalities rather exciting.

Link: (https://livelovelaughteach.files.wordpress.com/2013/09/treasure-hunt1.pdf)

The students are given a map of the U.S. with a grid and axes over the top, and their goal is to find where the treasure is hidden.  At the bottom of the page there are six possible places the treasure has been buried, marked by points on the map.  The students identify the six coordinate points, and then use the given system of inequalities to find the buried treasure.  This teacher’s worksheet has six equations, and once the students have graphed all of them, the solution contains only one of the six possible burial points.  I think this activity would be very engaging and interesting for the students.  Using the map of the U.S. is a good idea, since it gives them a bit of geography as well, but you could also create a map of a fictional island or continent, and use that as well.  To make it even more interesting, you could have each student create their own map and system of equations, and then trade with a partner to solve.

green line

How does this topic extend what your students should have learned in previous courses?

If students have a firm understanding of inequalities as well as linear systems of equations, then they have all the pieces they need to understand linear systems of inequalities quite easily and effectively.  They know how to write an inequality, how to graph it on the coordinate plane, and how to shade in the correct region.  They also know the different processes whereby they can solve linear systems of equations, whether by graphing or by algebra.  The main difference they would need to see is that when solving a linear system of equations, their solution is a point, whereas with a linear system of inequalities, it is a region with many, possibly infinitely many, points that fit the parameters of the system.  It would be very easy to remind them of what they have learned before, possibly do a little review if need be, and then make the connection to systems of inequalities and show them that it is not something completely different, but is simply an extension of what they have learned before.

green line

How can technology be used effectively to engage students with this topic?

Graphing calculators are sufficiently effective when working with linear systems of equations, but when working with inequalities, they are rather limited in what they can help students visualize.  They can only do ≥, not just >, and have the same problem with <.  It is also difficult to see the regions if you have multiple inequalities because the screen has no color.  This link is an online graphing calculator that has several options for inequalities: https://www.desmos.com/calculator.  You can choose any inequality, <, >, ≤, or ≥, type in several equations or inequalities, and the regions show up on the graph in different colors, making it easier to find the solution region.  Another feature of the graphing calculator is that the equations or inequalities do not have to be in the form of y=.  You can type in something like 3x+2y<7 or solve for y and then type it in.  I would use this graphing calculator to help students visualize the systems of inequalities, and see the solution.  When working with more than two inequalities, I would add just one region at a time to the graph, which you can do in this graphing calculator by clicking the equation on or off, so the students could keep track of what was going on.

References

Live.Love.Laugh.Teach.  Blog by Mrs. Graves.  https://livelovelaughteach.wordpress.com/category/linear-inequalities/

Graphing calculator https://www.desmos.com/calculator

 

 

 

 

Engaging students: Graphs of linear equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Nada Al-Ghussain. Her topic, from Algebra: graphs of linear equations.

green line

How could you as a teacher create an activity or project that involves your topic?

Positive slope, negative slope, no slope, and undefined, are four lines that cross over the coordinate plane. Boring. So how can I engage my students during the topic of graphs of linear equations, when all they can think of is the four images of slope? Simple, I assign a project that brings out the Individuality and creativity of each student. Something to wake up their minds!

An individualized image-graphing project. I would give each student a large coordinate plane, where they will graph their picture using straight lines only. I would ask them to use only points at intersections, but this can change to half points if needed. Then each student will receive an Equation sheet where they will find and write 2 equations for each different type of slope. So a student will have equations for two horizontal lines, vertical lines, positive slope, and negative slope. The best part is the project can be tailored to each class weakness or strength. I can also ask them to write the slop-intercept form, point slope form, or to even compare slopes that are parallel or perpendicular. When they are done, students would have practiced graphing and writing linear equations many times using their drawn images. Some students would be able to recognize slopes easier when they recall this project and their specific work on it.

 

Example of a project template:

 

projecttemplate

Examples of student work:

studentwork2

 

studentwork1

 

green line

How has this topic appeared in the news?

 

Millions of people tune in to watch the news daily. Information is poured into our ears and images through our eyes. We cannot absorb it all, so the news makes it easy for us to understand and uses graphs of linear equations. Plus, the Whoa! Factor of the slopping lines is really the attention grabber. News comes in many forms either through, TV, Internet, or newspaper. Students can learn to quickly understand the meaning of graphs with the different slopes the few seconds they are exposed to them.

 

On television, FOX news shows a positive slope of increasing number of job losses through a few years. (Beware for misrepresented data!)

graph1

A journal article contains the cost of college increase between public and private colleges showing the negative slope of private costs decreasing.

graph2

Most importantly line graphs can help muggles, half bloods, witches, and wizards to better understand the rise and decline of attractive characters through the Harry Potter series.

graph3

green line

How can this topic be used in your students’ future courses in mathematics or science?

 

Students are introduced to simple graphs of linear equations where they should be able to name and find the equation of the slope. In a student’s future course with computers or tablets, I would use the Desmos graphing calculator online. This tool gives the students the ability to work backwards. I would ask a class to make certain lines, and they will have to come up with the equation with only their knowledge from previous class. It would really help the students understand the reason behind a negative slope and positive slope plus the difference between zero slope and undefined. After checking their previous knowledge, students can make visual representations of graphing linear inequalities and apply them to real-world problems.

 

References:

http://www.hoppeninjamath.com/teacherblog/?p=217

http://walkinginmathland.weebly.com/teaching-math-blog/animal-project-graphing-linear-lines-and-stating-equations

http://mediamatters.org/research/2012/10/01/a-history-of-dishonest-fox-charts/190225

http://money.cnn.com/2010/10/28/pf/college/college_tuition/

http://dailyfig.figment.com/2011/07/13/harry-potter-in-charts/

https://www.desmos.com/calculator

 

 

 

Engaging students: Slope-intercept form of a line

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Kelley Nguyen. Her topic, from Algebra: slope-intercept form of a line.

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

 

The slope-intercept form of a line is a linear function. Linear functions are dealt with in many ways in everyday life, some of which you probably don’t even notice.

 

One example where the slope-intercept form of a line appears in high culture is through music and arts. Suppose a band wants to book an auditorium for their upcoming concert. As most bands do, they meet with the manager of the location, book a date, and determine a payment. Let’s say it costs $1,500 to rent the building for 2 hours. In addition to this fee, the band earns 20% of each $30 ticket sold. Write an equation that determines whether the band made profit or lost money due to the number of tickets sold – the equation would be y = 0.2(30)x – 1500, where y is the amount gained or lost and x is the number of tickets sold that night. This can also help the band determine their goal on how many tickets to sell. If they want to make a profit of $2,000, they would have to sell x-many tickets to accomplish that.

 

In reality, most arts performances make a profit from their shows or concerts. Not only do mathematicians and scientists use slope-intercept of a line, but with this example, it shows up in many types of arts and real-world situations. Not only does the form work for calculating cost or profit, it can relate to the number of seats in a theatre, such as x rows of 30 seats and a VIP section of 20 seats. The equation to find how many seats are available in the theatre is y = 30x + 20, where x is the number of rows.

 

 

green line

How can technology be used to effectively engage students with this topic?

 

A great way to engage students when learning about slope-intercept form of a line is to use Geometer’s Sketchpad. After opening a graph with an x- and y-axis, use the tools to create a line. From there, you can drag the line up or down and notice that the slope increases as you move upward and decreases as you move downward. Students can also find the equation of the line by selecting the line, clicking “Measure” in the menu bar, and selecting “Equation” in the drop-down list. This gives the students an accurate equation of the line they selected in slope-intercept form. Geometer’s Sketchpad allows students to experiment and explore directions of lines, determine whether or not it has an increasing slope, and help create a visual image for positive and negative slopes.

 

Also, with this program, students can play a matching game with slope-intercept equations and lines. You will instruct the student to create five random lines that move in any direction. Next, they will select all of the lines, go to “Measure” in the menu bar, and click “Equation.” From there, it’ll give them the equation of each line. Then, the student will go back and select the lines once again, go to “Edit” on the menu bar, hover over “Action Buttons,” and select “Hide/Show.” Once a box comes up, they will click the “Label” tab and type Scramble Lines in the text line. Next, the lines will scramble and stop when clicked on. Once the lines are done scrambling, the student could then match the equations with their lines. This activity gives the students the chance to look at equations and determine whether the slope is increasing and decreasing and where the line hits the y-axis.

 

 

green line

How could you as a teacher create an activity or project that involves your topic?

 

With this topic, I could definitely do a project that consists of slope-intercept equations, their graphs, and word problems that involve computations. For example, growing up, some students had to earn money by doing chores around the house. Parents give allowance on daily duties that their children did.

 

The project will give the daily amount of allowance that each student earned. With that, say the student needed to reach a certain amount of money before purchasing the iPad Air. In part one of the project, the student will create an equation that reflects their daily allowing of $5 and the amount of money they have at the moment. In part two, the student will construct a graph that shows the rate of their earnings, supposing that they don’t skip a day of chores. In part three, the students will answer a series of questions, such as,

  • What will you earn after a week?
  • What is your total amount of money after that week?
  • When will you have enough money to buy that iPad Air at $540 after tax?

 

This would be a short project, but it’s definitely something that the students can do outside of class as a fun activity. It can also help them reach their goals of owning something they want and making a financial plan on how to accomplish that.

 

References

 

 

 

 

Engaging students: Slope-intercept form of a line

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Theresa (Tress) Kringen. Her topic, from Algebra I: the point-slope intercept form of a line.

green line

What interesting word problem using this topic can your students do now?

When learning about slope-intercept from of a line, word problems would help my students engage and help process the information in a real world situation. I would present an equation for the speed of a ball that is thrown in a straight line up into the air. The equation given: v= 128-32t. I would explain that because we’re working with time and speed, height is not a variable in the equation. With v representing the speed or velocity of the ball in feet per second and t representing the time in seconds that has passed. I would include the following questions:

1. What is the slope of the given equation? Since the equation is given in slope intercept form, the students should be able to give the answer quickly if they understood the lesson. The answer is -32.

2. Without graphing the equation, which way would the line be headed, up and to the right or down and to the right? Because the students know that the slope is negative and given that they understood the lesson, they should be able to answer that the line is decreasing and is headed down and to the right.

http://www.purplemath.com/modules/slopyint.htm

green line

How can this topic be used in your students’ future courses in mathematics or science?

Students can use this topic for many math or science courses. When dealing with a linear equation, slope-intercept form of a line can help the student understand what the graph looks like without actually graphing it. This is useful when needing to find the y intercept (when x is equal to zero) and what the slope of the line is. This is also useful to know for understanding what slope is. When students understand that a slope of a particularly large number (a large whole number such as 1,000 or an improper fraction that equates to a large number such as 30,999/2) is rising quickly as opposed to a slope of a smaller number  (a smaller whole number such as two or a fraction that represents a very small portion of one such as 1/30,000) which is not rising quickly. It is helpful for the students to understand that a very large slope will look almost vertical and a small slope will look almost horizontal, with both depending on the degree of largeness or smallness.

green line

How can technology be used to effectively engage students with this topic?

When working with slope-intercept form, a student can actively be engaged through technology by attempting to make connections of how a graph looks on the graphing calculator and what the equation looks like in slope-intercept form. When allowing the students to make connections between them in small groups, they will have discovered the information form themselves. This will allow the students to more effectively program the information into their memories. To set this up, I would give each group a graphing calculator and a list of equations in slope-intercept form. On the paper with the list, I would have the students fill out information pertaining to the graph that they see. This information would include the slope and the y-intercept. I would split up the students into their cooperative learning groups two and ask them to draw a conclusion between where the line ends up compared to what the equation looks like. Once the students have typed their equation into the graphing calculator the students should fill out the paper provided. Once they have finished, I would ask them to see if they see any patterns between the equations and their answers.

 

Engaging students: Finding x- and y-intercepts

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Maranda Edmonson. Her topic, from Algebra: finding x- and y-intercepts. Unlike most student submissions, Maranda’s idea answers three different questions at once.

green lineApplications: How could you as a teacher create an activity or project that involves your topic?

Culture: How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

Technology: How can technology be used to effectively engage students with this topic?

This link is to a reflection by a mathematics teacher who used the popular TV show “The Big Bang Theory” to teach linear functions. She taught this lesson prior to teaching students about finding y-intercepts of linear functions, but it can be adapted in order to teach how to find the intercepts themselves.

ENGAGE:

One thing I would not change would be to show the students the above clip of the show where Howard and Sheldon are heatedly discussing crickets at the beginning of the activity. By showing the video at the beginning, students will be engaged and want to figure out what will be done throughout the lesson. Being a clip of a popular show that many probably watch during the week, students will be even more engaged and interested since they are able to watch something that they are already familiar with. Being something that they are already familiar with or can relate to, students have a tendency to remember the material or at least the topic longer than they would remember something that they were unfamiliar with or could not relate.

In the clip, Sheldon argues that the cricket the guys hear while eating dinner is a snowy tree cricket based on the temperature of the room and the frequency of chirps; Howard argues that it is an ordinary field cricket.  The beginning of their discussion is as follows:

Sheldon: “Based on the number of chirps per minute, and the ambient temperature in this room, it is a snowy tree cricket.”

Howard: “Oh, give me a frickin’ break. How could you possibly know that?”

Sheldon: “In 1890, Amos Dolbear determined that there was a fixed relationship between the number of chirps per minute of the snowy tree cricket and the ambient temperature – a precise relationship that is not present with ordinary field crickets.”

The whole episode revolves around the guys finding the exact genus and species of the cricket, but that is not the importance here. The importance of this clip is the linear relationship between the temperature and the number of chirps per minute of the cricket, which the activity should then be centered around.

EXPLORE:

After showing the short clip, it could be beneficial to show students the Wikipedia link that discusses Dolbear’s Law. Toward the bottom of the page, the relationship is written out in several formats, but there is a basic linear function that students could focus on for the activity.

Assuming students know how to graph linear functions (as stated above, the link is for a lesson the teacher taught before teaching students about y-intercepts), I would have students graph Dolbear’s Law on a piece of graph paper. The challenge would be for students to find out what happens when there are variations to the number of chirps of the cricket, the temperature or both to see how the graph changes – specifically where the graph crosses each axis.

 EXPLAIN/ELABORATE/EVALUATE:

At this point, students should be able to state what changes they noticed with the graph – specifically where the graph crossed the axes as changes are made to the function. After they have explained what they found, fill in any gaps and correct vocabulary as needed. Basically, teach what little there is left for the lesson. Follow-up by providing extra examples or a worksheet for students to practice before giving them a quiz or test to assess their performance.