# Thoughts on Infinity: Index

I’m doing something that I should have done a long time ago: collect past series of posts into a single, easy-to-reference post. The following posts formed my series on various lessons I’ve learned while trying to answer the questions posed by gifted elementary school students.

Part 1: Different types of countable sets

Part 2a: Divergence of the harmonic series.

Part 2b: Convergence of the Kempner series.

Part 3a: Conditional convergent series or products shouldn’t be rearranged.

Part 3b: Definition of the Euler-Mascheroni constant $\gamma$.

Part 3c: Evaluation of the conditionally convergent series $\displaystyle 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \dots$

Part 3d: Confirmation of this evaluation using technology.

Part 3e: Evaluation of a rearrangement of this conditionally convergent series.

Part 3f: Confirmation of this different evaluation using technology.

Part 3g: Closing thoughts.

# Difference of Two Powers (Index)

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on getting students to discover the formula for factoring $x^n - y^n$.

Part 1: A numerical way of discovering the formula for $x^2 - y^2$.

Part 2: A geometric way of discovering the formula for $x^2 - y^2$.

Part 3: Pedagogical thoughts on the importance of students discovering the formula for $x^3 - y^3$.

Part 4: A geometric way of discovering the formula for $x^3 - y^3$.

Part 5: Guiding students to the formula for $x^n - y^n$.

# Another Poorly Written Word Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series poorly written word problem, taken directly from textbooks and other materials from textbook publishers.

Part 2: Estimation and rounding.

Part 3: Probability.

Part 4: Subtraction and estimation.

Part 5: Algebra and inequality.

Part 6: Domain and range of a function.

Part 7: Algebra and inequality.

Part 8: Algebra and inequality.

# My Mathematical Magic Show: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. Here’s my series on the mathematical magic show that I’ll perform from time to time.

Part 1: Introduction.

Part 2a, 2b, and 2c: The 1089 trick.

Part 3a, 3b, and 3c: A geometric magic trick (see also here).

Part 4a, 4b, 4c, and 4d: A trick using binary numbers.

Part 5a, 5b, 5c, 5d: Predicting a digit that’s been erased from a number.

Part 6: Finale.

Part 7: The Fitch-Cheney 5-card trick.

Part 8a, 8b, 8c: A trick using Pascal’s triangle.

# Useless Numerology for 2016: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post.

Part 1: Introduction.

Part 2: $2016 = 2^{10}+2^9+2^8+2^7+2^6+2^5 = 2^{11} - 2^5$.

Part 3: $2016 = 1 + 2 + \dots + 63$.

Part 4: $2016 = (1 + 2 + \dots + 9)^2 - (1+2)^2 = 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3$

Part 5: $2016 = \displaystyle \sum_{n=0}^{63} (-1)^{n+1} n^2$

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my short series on a couple of easily stated but remarkably difficult geometry problems.

Part 1: The world’s second hardest easy geometry problem.

Part 2: The world’s hardest easy geometry problem.

# Different Ways of Computing a Limit: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on different ways of computing the limit

$\displaystyle \lim_{x \to \infty} \frac{\sqrt{x^2+1}}{x}$

Part 1: Algebra

Part 2: L’Hopital’s Rule

Part 3: Trigonometric substitution

Part 4: Geometry

Part 5: Geometry again

# Predicate Logic and Popular Culture: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on using examples from popular culture to illustrate principles of predicate logic.

Unlike other series that I’ve made, this series didn’t have a natural chronological order. So I’ll list these by concept illustrated from popular logic.

Logical and $\land$: Part 1

• Part 1: “You Belong To Me,” by Taylor Swift
• Part 21: “Do You Hear What I Hear,” covered by Whitney Houston
• Part 31: The Godfather (1972)
• Part 45: The Blues Brothers (1980)
• Part 53: “What Does The Fox Say,” by Ylvis
• Part 54: “Billie Jean,” by Michael Jackson

Logical or $\lor$:

• Part 1: Shawshank Redemption (1994)

Logical negation $\lnot$:

• Part 1: Richard Nixon
• Part 32: “Satisfaction!”, by the Rolling Stones
• Part 39: “We Are Never Ever Getting Back Together,” by Taylor Swift

Logical implication $\Rightarrow$:

• Part 1: Field of Dreams (1989), and also “Roam,” by the B-52s
• Part 2: “Word Crimes,” by Weird Al Yankovic
• Part 7: “I’ll Be There For You,” by The Rembrandts (Theme Song from Friends)
• Part 43: “Kiss,” by Prince
• Part 50: “I’m Still A Guy,” by Brad Paisley

For all $\forall$:

• Part 3: Casablanca (1942)
• Part 4: A Streetcar Named Desire (1951)
• Part 34: “California Girls,” by The Beach Boys
• Part 37: Fellowship of the Ring, by J. R. R. Tolkien
• Part 49: “Buy Me A Boat,” by Chris Janson
• Part 57: “Let It Go,” by Idina Menzel and from Frozen (2013)

For all and implication:

• Part 8 and Part 9: “What Makes You Beautiful,” by One Direction
• Part 13: “Safety Dance,” by Men Without Hats
• Part 16: The Fellowship of the Ring, by J. R. R. Tolkien
• Part 24Â : “The Chipmunk Song,” by The Chipmunks
• Part 55: The Quiet Man (1952)

There exists $\exists$:

• Part 10: “Unanswered Prayers,” by Garth Brooks
• Part 15: “Stand by Your Man,” by Tammy Wynette (also from The Blues Brothers)
• Part 36: Hamlet, by William Shakespeare
• Part 57: “Let It Go,” by Idina Menzel and from Frozen (2013)

Existence and uniqueness:

• Part 14: “Girls Just Want To Have Fun,” by Cyndi Lauper
• Part 20: “All I Want for Christmas Is You,” by Mariah Carey
• Part 23: “All I Want for Christmas Is My Two Front Teeth,” covered by The Chipmunks
• Part 29: “You’re The One That I Want,” from Grease
• Part 30: “Only You,” by The Platters
• Part 35: “Hound Dog,” by Elvis Presley

DeMorgan’s Laws:

• Part 5: “Never Gonna Give You Up,” by Rick Astley
• Part 28: “We’re Breaking Free,” from High School Musical (2006)

Simple nested predicates:

• Part 6: “Everybody Loves Somebody Sometime,” by Dean Martin
• Part 25: “Every Valley Shall Be Exalted,” from Handel’s Messiah
• Part 33: “Heartache Tonight,” by The Eagles
• Part 38: “Everybody Needs Somebody To Love,” by Wilson Pickett and covered in The Blues Brothers (1980)
• Part 46: “Mean,” by Taylor Swift
• Part 56: “Turn! Turn! Turn!” by The Byrds

Maximum or minimum of a function:

• Part 12: “For the First Time in Forever,” by Kristen Bell and Idina Menzel and from Frozen (2013)
• Part 19: “Tennessee Christmas,” by Amy Grant
• Part 22: “The Most Wonderful Time of the Year,” by Andy Williams
• Part 48: “I Got The Boy,” by Jana Kramer
• Part 60: “I Loved Her First,” by Heartland

Somewhat complicated examples:

• Part 11 : “Friends in Low Places,” by Garth Brooks
• Part 27Â : “There is a Castle on a Cloud,” from Les Miserables
• Part 41: Winston Churchill
• Part 44: Casablanca (1942)
• Part 51: “Everybody Wants to Rule the World,” by Tears For Fears
• Part 58: “Fifteen,” by Taylor Swift
• Part 59: “We Are Never Ever Getting Back Together,” by Taylor Swift
• Part 61: “Style,” by Taylor Swift

Fairly complicated examples:

• Part 17Â : Richard Nixon
• Part 47: “Homegrown,” by Zac Brown Band
• Part 52: “If Ever You’re In My Arms Again,” by Peabo Bryson

Really complicated examples:

• Part 18: “Sleigh Ride,” covered by Pentatonix
• Part 26: “All the Gold in California,” by the Gatlin Brothers
• Part 40: “One of These Things Is Not Like the Others,” from Sesame Street
• Part 42: “Take It Easy,” by The Eagles

# My Mathematical Magic Show: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show the mathematical magic show that I’ll perform from time to time.

Part 1: Introduction.

Part 2a, Part 2b, and Part 2c: The 1089 trick.

Part 4a: Part 4b, Part 4c, and Part 4d: A trick using binary numbers.

Part 5a, Part 5b, Part 5c, and Part 5d: A trick using the rule for checking if a number is a multiple of 9.

Part 7: The Fitch-Cheney card trick, which is perhaps the slickest mathematical card trick ever devised.

Part 8a, Part 8b, and Part 8c: A trick using Pascal’s triangle.

Part 6: The Grand Finale.

And, for the sake of completeness, here’s a recent picture of me just before I performed an abbreviated version of this show for UNT’s Preview Day for high school students thinking about enrolling at my university.

# Different Ways of Solving a Contest Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on different ways of solving the contest problem “If $3 \sin \theta = \cos \theta$, what is $\sin \theta \cos \theta$?”

Part 1: Drawing the angle $\theta$

Part 2: A first attempt using a Pythagorean identity.

Part 3: A second attempt using a Pythagorean identity and the original hypothesis for $\theta$.