# My Favorite One-Liners: Part 49

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them. Today’s post is certainly not a one-liner but instead is my pseudohistory for how the roots of polynomials were found.

When I teach Algebra II or Precalculus (or train my  future high school teachers to teach these subjects), we eventually land on the Rational Root Test and Descartes’ Rule of Signs as an aid for finding the roots of cubic equations or higher. Before I get too deep into this subject, however, I like to give a 10-15 minute pseudohistory about the discovery of how polynomial equations can be solved. Historians of mathematics will certain take issue with some of this “history.” However, the main purpose of the story is not complete accuracy but engaging students with the history of mathematics. I think the story I tell engages students while remaining reasonably accurate… and I always refer students to various resources if they want to get the real history.

To begin, I write down the easiest two equations to solve (in all cases, $a \ne 0$:

$ax + b = 0 \qquad$ and $\qquad ax^2 + bx + c = 0$

These are pretty easy to solve, with solutions well known to students:

$x = -\displaystyle \frac{b}{a} \qquad$ and $\qquad x = \displaystyle \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

In other words, there are formulas that you can just stick in the coefficients and get the answer out without thinking too hard. Sure, there are alternate ways of solving for $x$ that could be easier, like factoring, but the worst-case scenario is just plugging into the formula.

These formulas were known to Babylonian mathematicians around 2000 B.C. (When I teach this in class, I write the date, and all other dates and discoverers, next to the equations for dramatic pedagogical effect.) Though not written in these modern terms, basically every ancient culture on the globe that did mathematics had some version of these formulas: for example, the ancient Egyptians, Greeks, Chinese, and Mayans.

Naturally, this leads to a simple question: is there a formula for the cubic:

$ax^3 + bx^2 + cx + d = 0$

Is there some formula that we can just plug $a$, $b$, $c$, and $d$ to just get the answer?  The answer is, Yes, there is a formula. But it’s nasty. The formula was not discovered until 1535 A.D., and it was discovered by a man named Tartaglia. During the 1500s, the study of mathematics was less about the dispassionate pursuit of truth and more about exercising machismo. One mathematician would challenge another: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” Then the second mathematician would solve it and challenge the first: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” And so on. Well, Tartaglia came up with a formula that would solve every cubic equation. By plugging in $a$, $b$, $c$, and $d$, you get the answer out.

Tartaglia’s discovery was arguably the first triumph of the European Renaissance. The solution of the cubic was perhaps the first thing known to European mathematicians in the Middle Ages that was unknown to the ancient Greeks.

In 1535, Tartaglia was a relatively unknown mathematician, and so he told a more famous mathematician, Cardano, about his formula. Cardano told Tartaglia, why yes, that is very interesting, and then published the formula under his own name, taking credit without mention of Tartaglia. To this day, the formula is called Cardano’s formula.

So there is a formula. But it would take an entire chalkboard to write down the formula. That’s why we typically don’t make students learn this formula in high school; it’s out there, but it’s simply too complicated to expect students to memorize and use.

$ax^4 + bx^3 + cx^2 + dx + e = 0$

The solution of the quartic was discovered less than five years later by an Italian mathematician named Ferrari. Ferrari found out that there is a formula that you can just plug in $a$, $b$, $c$, $d$, and $e$, turn the crank, and get the answers out. Writing out this formula would take two chalkboards. So there is a formula, but it’s also very, very complicated.

Of course, Ferrari had some famous descendants in the automotive industry.

So now we move onto my favorite equation, the quintic. (If you don’t understand why it’s my favorite, think about my last name.)

$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$

After solving the cubic and quartic in rapid succession, surely there should also be a formula for the quintic. So they tried, and they tried, and they tried, and they got nowhere fast. Finally, the problem was solved nearly 300 years later, in 1832 (for the sake telling a good story, I don’t mention Abel) by a French kid named Evariste Galois. Galois showed that there is no formula. That takes some real moxie. There is no formula. No matter how hard you try, you will not find a formula that can work for every quintic. Sure, there are some quintics that can be solved, like $x^5 = 0$. But there is no formula that will work for every single quintic.

Galois made this discovery when he was 19 years old… in other words, approximately the same age as my students. In fact, we know when wrote down his discovery, because it happened the night before he died. You see, he was living in France in 1832. What was going on in France in 1832? I ask my class, have they seen Les Miserables?

France was torn upside-down in 1832 in the aftermath of the French Revolution, and young Galois got into a heated argument with someone over politics; Galois was a republican, while the other guy was a royalist. More importantly, both men were competing for the hand of the same young woman. So they decided to settle their differences like honorable Frenchmen, with a duel. So Galois wrote up his mathematical notes one night, and the next day, he fought the duel, he lost the duel, and he died.

Thus giving complete and total proof that tremendous mathematical genius does not prevent somebody from being a complete idiot.

For the present, there are formulas for cubic and quartic equations, but they’re long and impractical. And for quintic equations and higher, there is no formula. So that’s why we teach these indirect methods like the Rational Root Test and Descartes’ Rule of Signs, as they give tools to use to guess at the roots of higher-order polynomials without using something like the quadratic formula.

Real references:

http://mathworld.wolfram.com/CubicFormula.html

http://mathworld.wolfram.com/QuarticEquation.html

http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html

http://mathworld.wolfram.com/QuinticEquation.html

http://library.wolfram.com/examples/quintic/

http://library.wolfram.com/examples/quintic/timeline.html

# My Favorite One-Liners: Part 19

In this series, I’m compiling some of the quips and one-liners that I’ll use with my students to hopefully make my lessons more memorable for them. This is a quip that I’ll use when a theoretical calculation can be easily confirmed with a calculator. Today’s post is less of a one-liner than a story.

When I teach Algebra II or Precalculus (or train my  future high school teachers to teach these subjects), we eventually land on the Rational Root Test and Descartes’ Rule of Signs as an aid for finding the roots of cubic equations or higher. Before I get too deep into this subject, however, I like to give a 10-15 minute pseudohistory about the discovery of how polynomial equations can be solved. Historians of mathematics will certain take issue with some of this “history.” However, the main purpose of the story is not complete accuracy but engaging students with the history of mathematics. I think the story I tell engages students while remaining reasonably accurate… and I always refer students to various resources if they want to get the real history.

To begin, I write down the easiest two equations to solve (in all cases, $a \ne 0$:

$ax + b = 0 \qquad$ and $\qquad ax^2 + bx + c = 0$

These are pretty easy to solve, with solutions well known to students:

$x = -\displaystyle \frac{b}{a} \qquad$ and $\qquad x = \displaystyle \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

In other words, there are formulas that you can just stick in the coefficients and get the answer out without thinking too hard. Sure, there are alternate ways of solving for $x$ that could be easier, like factoring, but the worst-case scenario is just plugging into the formula.

These formulas were known to Babylonian mathematicians around 2000 B.C. (When I teach this in class, I write the date, and all other dates and discoverers, next to the equations for dramatic pedagogical effect.) Though not written in these modern terms, basically every ancient culture on the globe that did mathematics had some version of these formulas: for example, the ancient Egyptians, Greeks, Chinese, and Mayans.

Naturally, this leads to a simple question: is there a formula for the cubic:

$ax^3 + bx^2 + cx + d = 0$

Is there some formula that we can just plug $a$, $b$, $c$, and $d$ to just get the answer?  The answer is, Yes, there is a formula. But it’s nasty. The formula was not discovered until 1535 A.D., and it was discovered by a man named Tartaglia. During the 1500s, the study of mathematics was less about the dispassionate pursuit of truth and more about exercising machismo. One mathematician would challenge another: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” Then the second mathematician would solve it and challenge the first: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” And so on. Well, Tartaglia came up with a formula that would solve every cubic equation. By plugging in $a$, $b$, $c$, and $d$, you get the answer out.

Tartaglia’s discovery was arguably the first triumph of the European Renaissance. The solution of the cubic was perhaps the first thing known to European mathematicians in the Middle Ages that was unknown to the ancient Greeks.

In 1535, Tartaglia was a relatively unknown mathematician, and so he told a more famous mathematician, Cardano, about his formula. Cardano told Tartaglia, why yes, that is very interesting, and then published the formula under his own name, taking credit without mention of Tartaglia. To this day, the formula is called Cardano’s formula.

So there is a formula. But it would take an entire chalkboard to write down the formula. That’s why we typically don’t make students learn this formula in high school; it’s out there, but it’s simply too complicated to expect students to memorize and use.

$ax^4 + bx^3 + cx^2 + dx + e = 0$

The solution of the quartic was discovered less than five years later by an Italian mathematician named Ferrari. Ferrari found out that there is a formula that you can just plug in $a$, $b$, $c$, $d$, and $e$, turn the crank, and get the answers out. Writing out this formula would take two chalkboards. So there is a formula, but it’s also very, very complicated.

Of course, Ferrari had some famous descendants in the automotive industry.

So now we move onto my favorite equation, the quintic. (If you don’t understand why it’s my favorite, think about my last name.)

$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$

After solving the cubic and quartic in rapid succession, surely there should also be a formula for the quintic. So they tried, and they tried, and they tried, and they got nowhere fast. Finally, the problem was solved nearly 300 years later, in 1832 (for the sake telling a good story, I don’t mention Abel) by a French kid named Evariste Galois. Galois showed that there is no formula. That takes some real moxie. There is no formula. No matter how hard you try, you will not find a formula that can work for every quintic. Sure, there are some quintics that can be solved, like $x^5 = 0$. But there is no formula that will work for every single quintic.

Galois made this discovery when he was 19 years old… in other words, approximately the same age as my students. In fact, we know when wrote down his discovery, because it happened the night before he died. You see, he was living in France in 1832. What was going on in France in 1832? I ask my class, have they seen Les Miserables?

France was torn upside-down in 1832 in the aftermath of the French Revolution, and young Galois got into a heated argument with someone over politics; Galois was a republican, while the other guy was a royalist. More importantly, both men were competing for the hand of the same young woman. So they decided to settle their differences like honorable Frenchmen, with a duel. So Galois wrote up his mathematical notes one night, and the next day, he fought the duel, he lost the duel, and he died.

Which bring me to the conclusion of this story: we have complete and total proof that tremendous mathematical genius does not prevent somebody from being a complete idiot.

For the present, there are formulas for cubic and quartic equations, but they’re long and impractical. And for quintic equations and higher, there is no formula. So that’s why we teach these indirect methods like the Rational Root Test and Descartes’ Rule of Signs, as they give tools to use to guess at the roots of higher-order polynomials without using something like the quadratic formula.

Real references:

http://mathworld.wolfram.com/CubicFormula.html

http://mathworld.wolfram.com/QuarticEquation.html

http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html

http://mathworld.wolfram.com/QuinticEquation.html

http://library.wolfram.com/examples/quintic/

http://library.wolfram.com/examples/quintic/timeline.html

# My Mathematical Magic Show: Part 9

This mathematical trick was not part of my Pi Day magic show but probably should have been. I first read about this trick in one of Martin Gardner‘s books when I was a teenager, and it’s amazing how impressive this appears when performed. I particularly enjoy stumping my students with this trick, inviting them to figure out how on earth I pull it off.

Here’s a video of the trick, courtesy of Numberphile:

Summarizing, there’s a way of quickly determining $x$ given the value of $x^5$ if $x$ is a positive integer less than 100:

• The ones digit of $x$ will be the ones digit of $x^5$.
• The tens digit of $x$ can be obtained by listening to how big $x^5$ is. This requires a bit of memorization (and I agree with the above video that the hardest ones to quickly determine in a magic show are the ones less than $40^5$ and the ones that are slightly larger than a billion):
• 10: At least 10,000.
• 20: At least 3 million.
• 30: At least 24 million.
• 40: At least 100 million.
• 50: At least 300 million.
• 60: At least 750 million.
• 70: At least 1.6 billion.
• 80: At least 3.2 billion.
• 90: At least 5.9 billion.

# My “history” of solving cubic, quartic and quintic equations

When I teach Algebra II or Precalculus (or train my  future high school teachers to teach these subjects), we eventually land on the Rational Root Test and Descartes’ Rule of Signs as an aid for finding the roots of cubic equations or higher. Before I get too deep into this subject, however, I like to give a 10-15 minute pseudohistory about the discovery of how polynomial equations can be solved. Historians of mathematics will certain take issue with some of this “history.” However, the main purpose of the story is not complete accuracy but engaging students with the history of mathematics. I think the story I tell engages students while remaining reasonably accurate… and I always refer students to various resources if they want to get the real history.

To begin, I write down the easiest two equations to solve (in all cases, $a \ne 0$:

$ax + b = 0 \qquad$ and $\qquad ax^2 + bx + c = 0$

These are pretty easy to solve, with solutions well known to students:

$x = -\displaystyle \frac{b}{a} \qquad$ and $\qquad x = \displaystyle \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

In other words, there are formulas that you can just stick in the coefficients and get the answer out without thinking too hard. Sure, there are alternate ways of solving for $x$ that could be easier, like factoring, but the worst-case scenario is just plugging into the formula.

These formulas were known to Babylonian mathematicians around 2000 B.C. (When I teach this in class, I write the date, and all other dates and discoverers, next to the equations for dramatic pedagogical effect.) Though not written in these modern terms, basically every ancient culture on the globe that did mathematics had some version of these formulas: for example, the ancient Egyptians, Greeks, Chinese, and Mayans.

Naturally, this leads to a simple question: is there a formula for the cubic:

$ax^3 + bx^2 + cx + d = 0$

Is there some formula that we can just plug $a$, $b$, $c$, and $d$ to just get the answer?  The answer is, Yes, there is a formula. But it’s nasty. The formula was not discovered until 1535 A.D., and it was discovered by a man named Tartaglia. During the 1500s, the study of mathematics was less about the dispassionate pursuit of truth and more about exercising machismo. One mathematician would challenge another: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” Then the second mathematician would solve it and challenge the first: “Here’s my cubic equation; I bet you can’t solve it. Nyah-nyah-nyah-nyah-nyah.” And so on. Well, Tartaglia came up with a formula that would solve every cubic equation. By plugging in $a$, $b$, $c$, and $d$, you get the answer out.

Tartaglia’s discovery was arguably the first triumph of the European Renaissance. The solution of the cubic was perhaps the first thing known to European mathematicians in the Middle Ages that was unknown to the ancient Greeks.

In 1535, Tartaglia was a relatively unknown mathematician, and so he told a more famous mathematician, Cardano, about his formula. Cardano told Tartaglia, why yes, that is very interesting, and then published the formula under his own name, taking credit without mention of Tartaglia. To this day, the formula is called Cardano’s formula.

So there is a formula. But it would take an entire chalkboard to write down the formula. That’s why we typically don’t make students learn this formula in high school; it’s out there, but it’s simply too complicated to expect students to memorize and use.

$ax^4 + bx^3 + cx^2 + dx + e = 0$

The solution of the quartic was discovered less than five years later by an Italian mathematician named Ferrari. Ferrari found out that there is a formula that you can just plug in $a$, $b$, $c$, $d$, and $e$, turn the crank, and get the answers out. Writing out this formula would take two chalkboards. So there is a formula, but it’s also very, very complicated.

Of course, Ferrari had some famous descendants in the automotive industry.

So now we move onto my favorite equation, the quintic. (If you don’t understand why it’s my favorite, think about my last name.)

$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$

After solving the cubic and quartic in rapid succession, surely there should also be a formula for the quintic. So they tried, and they tried, and they tried, and they got nowhere fast. Finally, the problem was solved nearly 300 years later, in 1832 (for the sake telling a good story, I don’t mention Abel) by a French kid named Evariste Galois. Galois showed that there is no formula. That takes some real moxie. There is no formula. No matter how hard you try, you will not find a formula that can work for every quintic. Sure, there are some quintics that can be solved, like $x^5 = 0$. But there is no formula that will work for every single quintic.

Galois made this discovery when he was 19 years old… in other words, approximately the same age as my students. In fact, we know when wrote down his discovery, because it happened the night before he died. You see, he was living in France in 1832. What was going on in France in 1832? I ask my class, have they seen Les Miserables?

France was torn upside-down in 1832 in the aftermath of the French Revolution, and young Galois got into a heated argument with someone over politics; Galois was a republican, while the other guy was a royalist. More importantly, both men were competing for the hand of the same young woman. So they decided to settle their differences like honorable Frenchmen, with a duel. So Galois wrote up his mathematical notes one night, and the next day, he fought the duel, he lost the duel, and he died.

Thus giving complete and total proof that tremendous mathematical genius does not prevent somebody from being a complete idiot.

For the present, there are formulas for cubic and quartic equations, but they’re long and impractical. And for quintic equations and higher, there is no formula. So that’s why we teach these indirect methods like the Rational Root Test and Descartes’ Rule of Signs, as they give tools to use to guess at the roots of higher-order polynomials without using something like the quadratic formula.

Real references:

http://mathworld.wolfram.com/CubicFormula.html

http://mathworld.wolfram.com/QuarticEquation.html

http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html

http://mathworld.wolfram.com/QuinticEquation.html

http://library.wolfram.com/examples/quintic/

http://library.wolfram.com/examples/quintic/timeline.html

# Square roots and logarithms without a calculator (Part 8)

I’m in the middle of a series of posts concerning the elementary operation of computing a root. This is such an elementary operation because nearly every calculator has a $\sqrt{~~}$ button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find roots. I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders.

To begin, let’s again go back to a time before the advent of pocket calculators… say, 1952.

This story doesn’t go back to 1952 but to Boxing Day 2012 (the day after Christmas). For some reason, my daughter — out of the blue — asked me to compute $\sqrt[19]{25727}$ without a calculator. As my daughter adores the ground I walk on — and I want to maintain this state of mind for as long as humanly possible — I had no choice but to comply. So I might as well have been back in 1952.

In the past few posts, I discussed how log tables and slide rules were used by previous generations to perform this calculation. The problem was that all of these tools were in my office and not at home, and hence were not of immediate use.

The good news is that I had a few logarithms memorized:

$\log_{10} 2 \approx 0.301$, $\log_{10} 3 \approx 0.477$, $\log_{10} 7 = 0.845$,

and $\ln 10 = 2.3$.

I had the first two logs memorized when I was a child; the third I memorized later. As I’ll describe, the first three logarithms can be used with the laws of logarithms to closely approximate the base-10 logarithm of nearly any number. The last logarithm was important in previous generations for using the change-of-base formula from $\log_{10}$ to $\ln$. It was also prominently mentioned in the chapter “Lucky Numbers” from a favorite book of my childhood, Surely You’re Joking Mr. Feynman, so I had that memorized as well.

I also knew that $\ln(1+x) \approx x$ for $x = 0$ from the Taylor expansion of $\ln(1+x)$.

To begin, I first noticed that $25727 \approx 25600$, and I knew I could get $\log_{10} 25600$ since $25600 = 2^8 \times 100$. So I started with

$\log_{10} 25727 = \log_{10} \left(100 \times 256 \times \displaystyle \frac{257.27}{256} \right)$

$\log_{10} 25727 \approx \log_{10} 100 + 8 \log_{10} 2 + \log_{10} 1.005$

$\log_{10} 25727 \approx 2 + 8(0.301) + \displaystyle \frac{\ln 1.005}{\ln 10}$

$\log_{10} 25727 \approx 4.408 + \displaystyle \frac{0.005}{2.3}$

$\log_{10} 25727 \approx 4.408 + 0.002$

$\log_{10} 25727 \approx 4.410$

I did all of the above calculations by hand, cutting off after three decimal places (since I had those base-10 logarithms memorized to only three decimal places). Therefore,

$\log_{10} 25727^(1/19) = \displaystyle \frac{1}{19} \log_{10} 25727 \approx \displaystyle \frac{4.410}{19} \approx 0.232$

So, to complete the calculation, I had to find the value of $x$ so that $\log_{10} x = 0.232$. This was by far the hardest step, since it could only be done by trial and error. I forget exactly what steps I tried, but here’s a sample:

$\log_{10} 2 \approx 0.301$. Too big.

$\log_{10} 1.5 = \log_{10} \displaystyle \frac{3}{2} = \log_{10} 3 - \log_{10} 2 \approx 0.477 - 0.301 = 0.176$. Too small.

$\log_{10} 1.6 = \log_{10} \displaystyle \frac{2^4}{10} = 4\log_{10} 2 - \log_{10} 10 \approx 4(0.301) - 1 = 0.203$. Too small.

$\log_{10} 1.8 = \log_{10} \displaystyle \frac{2 \cdot 3^2}{10} \approx 0.301 + 2(0.477) - 1 = 0.255$. Too big.

Eventually, I got to

$\log_{10} 1.71 = \log_{10} \displaystyle \frac{3^2 \cdot 19}{100}$

$\log_{10} 1.71 = 2\log_{10} 3 + \log_{10} 19 - \log_{10} 100$

$\log_{10} 1.71 \approx 2(0.477) + \displaystyle \frac{\log_{10} 18 + \log_{10} 20}{2} - 2$

$\log_{10} 1.71 \approx -1.046 + \frac{1}{2} (\log_{10} 2 + 2 \log_{10} 3 + \log_{10} 2 + \log_{10} 10)$

$\log_{10} 1.71 \approx -1.046 + \frac{1}{2}(2.556)$

$\log_{10} 1.71 \approx 0.232$

So, after a hour or two of arithmetic, I told her my answer: $\sqrt[19]{25727} \approx 1.71$. You can imagine my sheer delight when we checked my answer with a calculator:

In Part 9, I’ll discuss my opinion about whether or not these kinds of calculations have any pedagogical value for students learning logarithms.