For , Riemann’s famous zeta function is defined by

.

This is also called a *p*-series in calculus.

What I didn’t know (*Gamma*, page 41) is that, in 1748, Leonhard Euler exactly computed this infinite series for *without a calculator*! Here’s the answer:

.

I knew that Euler was an amazing human calculator, but I didn’t know he was *that* amazing.

When I researching for my series of posts on conditional convergence, especially examples related to the constant , the reference *Gamma: Exploring Euler’s Constant* by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

### Like this:

Like Loading...

*Related*

## 1 Comment