Lessons from teaching gifted elementary school students (Part 6a)

Every so often, I’ll informally teach a class of gifted elementary-school students. I greatly enjoy interacting with them, and I especially enjoy the questions they pose. Often these children pose questions that no one else will think about, and answering these questions requires a surprising depth of mathematical knowledge.

Here’s a question I once received:

255/256 to what power is equal to 1/2? And please don’t use a calculator.

Answering this question is pretty straightforward using algebra:

$\displaystyle \left( \frac{255}{256} \right)^x = \displaystyle \frac{1}{2}$.

$\displaystyle x \lnÂ \frac{255}{256} = \ln \displaystyle \frac{1}{2}$

$x \displaystyle \frac{ \displaystyle \ln \frac{1}{2} }{\ln \displaystyle \frac{255}{256}}$

However, doing this without a calculator — and thus maintaining my image in front of these elementary school students — is a little formidable.

I’ll reveal how I did this — getting the answer correct to the nearest integer — in tomorrow’s post. In the meantime, I’ll leave a thought bubble if you’d like to think about it on your own.

One thought on “Lessons from teaching gifted elementary school students (Part 6a)”

This site uses Akismet to reduce spam. Learn how your comment data is processed.