What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 12

Let X_1, X_2, X_3, \dots be a sequence of independent and identically distributed random variables, and let H_n be the number of “record highs” upon to and including event n. For example, each X_i can represent the amount of rainfall in a year, where X_1 is amount of rainfall recorded the first time that records were kept. As shown in Gamma (page 125), the expected number of record highs is

H_n = \displaystyle 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.

As noted in Gamma,

Two arbitrary chosen examples are revealing. The Radcliffe Meteorological Station in Oxford has data for rainfall in Oxford between 1767 and 2000 and there are five record years; this is a span of 234 recorded years and H_{234} = 6.03. For Central Park, New York City, between 1835 and 1994 there are six record years over the 160-year period and H_{160} = 5.65, providing good evidence that English weather is that bit more unpredictable.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 11

The Euler-Mascheroni  constant \gamma is defined by

\gamma = \displaystyle \lim_{n \to \infty} \left( \sum_{r=1}^n \frac{1}{r} - \ln n \right).

What I didn’t know, until reading Gamma (page 117), is that there are at least two ways to generalize this definition.

First, \gamma may be thought of as

\gamma = \displaystyle \lim_{n \to \infty} \left( \sum_{r=1}^n \frac{1}{\hbox{length of~} [0,r]} - \ln n \right),

and so this can be generalized to two dimensions as follows:

\delta = \displaystyle \lim_{n \to \infty} \left( \sum_{r=2}^n \frac{1}{\pi (\rho_r)^2} - \ln n \right),

where \rho_r is the radius of the smallest disk in the plane containing at least r points (a,b) so that a and b are both integers. This new constant \delta is called the Masser-Gramain constant; like \gamma, the exact value isn’t known.

green line

Second, let f(x) = \displaystyle \frac{1}{x}. Then \gamma may be written as

\gamma = \displaystyle \lim_{n \to \infty} \left( \sum_{r=1}^n f(r) - \int_1^n f(x) \, dx \right).

Euler (not surprisingly) had the bright idea of changing the function f(x) to any other positive, decreasing function, such as

f(x) = x^a, \qquad -1 \le a < 0,

producing Euler’s generalized constants. Alternatively (from Stieltjes), we could choose

f(x) = \displaystyle \frac{ (\ln x)^m }{x}.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 9

When teaching students mathematical induction, the following series (well, at least the first two or three) are used as typical examples:

1 + 2 + 3 + \dots + n = \displaystyle \frac{n(n+1)}{2}

1^2 + 2^2 + 3^2 + \dots + n^2 = \displaystyle \frac{n(n+1)(2n+1)}{6}

1^3 + 2^3 + 3^3 + \dots + n^3 = \displaystyle \frac{n^2(n+1)^2}{4}

1^4 + 2^4 + 3^4 + \dots + n^4 = \displaystyle \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}

What I didn’t know (Gamma, page 81) is that Johann Faulhaber published the following cute result in 1631 (see also Wikipedia): If k is odd, then

1^k + 2^k + 3^k + \dots + n^k = f_k(n(n+1)),

where f_k is a polynomial. For example, to match the above examples, f_1(x) = x/2 and f_3(x) = x^2/4. Furthermore, if k is even, then

1^k + 2^k + 3^k + \dots + n^k = (2n+1) f_k(n(n+1)),

where again f_k is a polynomial. For example, to match the above examples, f_2(x) = x/6 and f_3(x) = x(3x-1)/30.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 8

I had always wondered how the constant \gamma can be computed to high precision. I probably should have known this already, but here’s one way that it can be computed (Gamma, page 89):

\gamma = \displaystyle \sum_{k=1}^n \frac{1}{k} - \ln n - \sum_{k=1}^{\infty} \frac{B_{2k}}{2k \cdot n^{2k}},

where B_{2k} is the 2kth Bernoulli number.

 

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 5

Check out this lovely integral, dubbed the Sophomore’s Dream, found by Johann Bernoulli in 1697 (Gamma, page 44):

\displaystyle \int_0^1 \frac{dx}{x^x} = \displaystyle \frac{1}{1^1} + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots.

I’ll refer to either Wikipedia or Mathworld for the derivation.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 4

For s > 1, Riemann’s famous zeta function is defined by

\zeta(s) = \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s}.

This is also called a p-series in calculus.

What I didn’t know (Gamma, page 41) is that, in 1748, Leonhard Euler exactly computed this infinite series for s = 26 without a calculator! Here’s the answer:

\displaystyle 1 + \frac{1}{2^{26}} + \frac{1}{3^{26}} + \frac{1}{4^{26}} + \dots = \frac{1,315,862 \pi^{26}}{11,094,481,976,030,578,125}.

I knew that Euler was an amazing human calculator, but I didn’t know he was that amazing.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 3

At the time of this writing, it is unknown if there are infinitely many twin primes, which are prime numbers that differ by 2 (like 3 and 5, 5 and 7, 11 and 13, 17 and 19, etc.) However, significant progress has been made in recent years. However, it is known (Gamma, page 30) the sum of the reciprocals of the twin primes converges:

\displaystyle \left( \frac{1}{3} + \frac{1}{5} \right) + \left( \frac{1}{5} + \frac{1}{7} \right) + \left( \frac{1}{11} + \frac{1}{13} \right) + \left( \frac{1}{17} + \frac{1}{19} \right) = 1.9021605824\dots.

This constant is known as Brun’s constant (see also Mathworld). In the process of computing this number, the infamous 1994 Pentium bug was found.

Although this sum is finite, it’s still unknown if there are infinitely many twin primes since it’s possible for an infinite sum to converge (like a geometric series).

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 2

Let’s define partial sums of the harmonic series as follows:

H(m,n) = \displaystyle \frac{1}{m} + \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{n-1} + \frac{1}{n},

where m < n are positive integers. Here are a couple of facts that I didn’t know before reading Gamma (pages 24-25):

  • H(m,n) is never equal to an integer.
  • The only values of n for which H(1,n) is an integer are n = 2 and n=6.

green line

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

What I Learned from Reading “Gamma: Exploring Euler’s Constant” by Julian Havil: Part 1

When I researching for my series of posts on conditional convergence, especially examples related to the constant \gamma, the reference Gamma: Exploring Euler’s Constant by Julian Havil kept popping up. Finally, I decided to splurge for the book, expecting a decent popular account of this number. After all, I’m a professional mathematician, and I took a graduate level class in analytic number theory. In short, I don’t expect to learn a whole lot when reading a popular science book other than perhaps some new pedagogical insights.

Boy, was I wrong. As I turned every page, it seemed I hit a new factoid that I had not known before.

In this series, I’d like to compile some of my favorites — while giving the book a very high recommendation.

green lineIt is well known the harmonic series diverges:

\displaystyle 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty.

This means that, no matter what number N you choose, I can find a number n so that

\displaystyle 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} > N.

What I didn’t know (p. 23 of Gamma) is that, in 1968, somebody actually figured out the precise number of terms that are needed for the sum on the left hand side to exceed 100. Here’s the answer:

15,092,688,622,113,788,323,693,563,264,538,101,449,859,497.

With one fewer term, the sum is a little less than 100.

Thoughts on Infinity: Index

I’m doing something that I should have done a long time ago: collect past series of posts into a single, easy-to-reference post. The following posts formed my series on various lessons I’ve learned while trying to answer the questions posed by gifted elementary school students.

Part 1: Different types of countable sets

Part 2a: Divergence of the harmonic series.

Part 2b: Convergence of the Kempner series.

Part 3a: Conditional convergent series or products shouldn’t be rearranged.

Part 3b: Definition of the Euler-Mascheroni constant \gamma.

Part 3c: Evaluation of the conditionally convergent series \displaystyle 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \dots

Part 3d: Confirmation of this evaluation using technology.

Part 3e: Evaluation of a rearrangement of this conditionally convergent series.

Part 3f: Confirmation of this different evaluation using technology.

Part 3g: Closing thoughts.