Lessons from teaching gifted elementary school students (Part 8a)

Every so often, I’ll informally teach a class of gifted elementary-school students. I greatly enjoy interacting with them, and I especially enjoy the questions they pose. Often these children pose questions that no one else will think about, and answering these questions requires a surprisingly depth of mathematical knowledge.

Here’s a question I once received, in the students’ original handwriting:

PascalProblem

Here’s the explanation that my students told me (but didn’t write down): they wanted me to add adjacent numbers on the bottom row to produce the number on the next row, building upward until I reached the apex of the triangle. For example, the lower-left portion of the triangle would build like this (since 1+4=5, 4+9=13, 9+16=25, etc.):

56

18   38

5    13    25

1     4     9     16

Then, after I reached the top number, they wanted me to take the square root of that number. (Originally, they wanted me to first multiply by 80 before taking the square root, but evidently they decided to take it easy on me.)

And, just to see if I could do it, they wanted me to do all of this without using a calculator. But they were nice and allowed me to use pencil and paper.

And I produced the answer in less than five minutes.

I’ll reveal how I got the answer so quickly in this series. In the meantime, I’ll leave a thought bubble if you’d like to think about it on your own.

green_speech_bubble

Engaging students: Using Pascal’s triangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Jason Trejo. His topic, from Precalculus: using Pascal’s triangle.

green line

How could you as a teacher create an activity or project that involves your topic?

After some research and interesting observations I came across while examining Pascal’s Triangle, I feel like I could create some sort of riddle worksheet that involves the Triangle. Once I have taught my students how to create Pascal’s Triangle, I could give my students riddles such as:

  • Once you go and strive in prime, belittling your neighbors isn’t a crime.
    • Students might notice that each number (other than 1) in a prime number row is divisible by that prime number:
      • Row 7= 1, 7, 21, 35, 35, 21, 7, 1
      • Row 11= 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
    • Naturally shallow slides aren’t much fun, but with a fib of raunchy, it is this one.
      • Given that I have gone over the Fibonacci sequence with my students prior to these riddles, I could include this one. The students should eventually see that if you take shallow diagonals on Pascal’s Triangle, the sum of those diagonals are the consecutive numbers in the Fibonacci sequence.
    • In a game on blades, you can’t be a schmuck with a puck. Be nimble and quick to look for the stick.
      • This one is a little more straightforward compared to the last two so hopefully the students will make the connection to notice the hockey stick pattern on the diagonals of Pascal’s Triangle. When adding the numbers down a diagonal, then the number to the side and below will be the sum, thus looking like a hockey stick.
    • What else is there? What else is in store? What patterns can you find when you know who to root four?
      • The “typo” is intentional to give a hint at another pattern the students might notice on Pascal’s Triangle. Now I am challenging the students to find more patterns within the Triangle such as:
        • Sum of rows are the powers of 2
        • Rows relate to the powers of 11 (get murky after the 4th row)
        • Counting numbers, triangular numbers, etc.

The purpose of this activity would extend the use of Pascal’s triangle from what they already know. I could assign this at the beginning of the lesson and if no one understands what the riddles meant, we could come back as a class and figure them out together once the lesson was done. These riddles could be an assignment of their own if I introduce them after they are very familiar with Pascal’s Triangle.

 

green line

How can this topic be used in students’ future courses in mathematics and science?

I would say the primary use most students will get from Pascal’s Triangle would be to find the coefficients of binomials since it is much easier when working on binomial expansions, but there are also other ways they can use the Triangle as well. For one, it can be of great use in many courses that involve since it is a visual in seeing the number of combinations there are based on the number of items used. For example, say there are 6 different pieces of candy in a bowl and you need to know how many different ways can you choose 3 candies? Using Pascal’s Triangle, we look at the 6th row and the 3rd entry in that row (remembering the top row is Row 0 and the first 1 in each row is Entry 0), we can see that there are 20 possible combinations of 3 different pieces of candy. Other than that, even based on the riddle activity from above, students can use Pascal’s Triangle and its various patterns to help remember such things as triangular numbers, powers of 11, etc.

 

 

green line

How has this topic appeared in high culture?

Within the past few years, the Shanghai-based design company, Super Nature Design, created the interactive art piece “Lost in Pascal’s Triangle”. This structure takes inspiration from Pascal’s Triangle and allows people to “explore the concept and magnification of the Pascal’s Triangle mathematics formula.” The following link takes you to the website that gives a bit more information behind the piece and shows how people can interact with the structure through a xylophone-type console: http://www.supernaturedesign.com/work/pascaltriangle#8

Another quick application that can be done through Pascal’s Triangle is by seeing the relationship between the Triangle and Sierpinski’s triangle (as shown below):

pascal1

The pattern is by shading in every odd number on Pascal’s Triangle, you start creating Sierpinski’s triangle which is found in many works of art like these:

pascal2

 

 

pascal3

It might actually be a small but fun project to have the students create something like this at the beginning of the lesson and then explain the relation of the two special triangles.

References:

Pascal Triangle Information: http://jwilson.coe.uga.edu/EMAT6680Su12/Berryman/6690/BerrymanK-Pascals/BerrymanK-Pascals.html

Image of Pascal’s Triangle: http://mathforum.org/workshops/usi/pascal/images/pascal.hex2.gif

Lost in Pascal’s Triangle: http://www.designboom.com/weblog/images/images_2/andrea/super_nature_design/pascaltriangle01.jpg

Super Nature Design: http://www.supernaturedesign.com/work/pascaltriangle#2

Pascal and Sierpinski Triangle : http://mathforum.org/workshops/usi/pascal/images/sierpinski.pascalfrac.gif

Sierpinski Pyramid: http://www.sierpinskitetrahedron.com/images/sierpinski-tetrahedron-breckenridge.JPG

Sierpinski Art Project: http://fractalfoundation.org/wp-content/uploads/2009/03/sierpkids1.jpg

My Mathematical Magic Show: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. Here’s my series on the mathematical magic show that I’ll perform from time to time.

Part 1: Introduction.

Part 2a, 2b, and 2c: The 1089 trick.

Part 3a, 3b, and 3c: A geometric magic trick (see also here).

Part 4a, 4b, 4c, and 4d: A trick using binary numbers.

Part 5a, 5b, 5c, 5d: Predicting a digit that’s been erased from a number.

Part 6: Finale.

Part 7: The Fitch-Cheney 5-card trick.

Part 8a, 8b, 8c: A trick using Pascal’s triangle.

 

My Mathematical Magic Show: Part 8c

This mathematical trick was not part of my Pi Day magic show but probably should have been… I’ve performed this for my Precalculus classes in the past but flat forgot about it when organizing my Pi Day show. The next time I perform a magic show, I’ll do this one right after the 1089 trick. (I think I learned this trick from a Martin Gardner book when I was young, but I’m not sure about that.)

Here’s a description of the trick. I give my audience a deck of cards and ask them to select six cards between ace and nine (in other words, no tens, jacks, queens, or kings). The card are placed face up, side by side.

After about 5-10 seconds, I secretly write a pull out a card from the deck and place it face down above the others.

 

pascalcardtrick1

I then announce that we’re going to some addition together… with the understanding that I’ll never write down a number larger than 9. For example, the 4 and 6 of spades are next to each other. Obviously, 4+6 = 10, but my rule is that I’m going to write down a number larger than 9. So I’ll subtract 9 whenever necessary: 10-9 = 1. Since 1 corresponds to ace, I place an ace about the 4 and 6 of spades.

Continuing in this way (and having the audience participate in the arithmetic so that this doesn’t get boring), I eventually get to this position:

pascalcardtrick5

Finally, I add the two cards at the top (and, in this case, subtract 9) to get 6+9-9 = 6, and I dramatically turn over the last card to reveal a 6.

pascalcardtrick6

I’ll often perform this trick when teaching Precalculus, as the final answer involving Pascal’s triangle. As discussed yesterday, suppose that the six cards are a, b, c, d, e, and f. Forgetting for now about subtracting by 9, here’s how the triangle unfolds (turning the triangle upside down):

a \qquad \qquad \qquad \quad b \qquad \qquad \qquad \quad c \qquad \qquad \qquad \quad d \qquad \qquad \qquad \quad e \qquad \qquad \qquad \quad f

a+b \qquad \qquad \qquad b+c \qquad \qquad \qquad c+d \qquad \qquad \qquad d+e \qquad \qquad \qquad e+f

a+2b+c \qquad \qquad b+2c+d \qquad \qquad c+2d+e \qquad \qquad d+2e+f

a+3b+3c+d \qquad \quad b+3c+3d+e \qquad \quad c+3d+3e+f

a+4b+6c+4d+e \qquad b+4c+6d+5e+f

a+5b+10c+10d+5e+f

 Not surprisingly, the coefficients in the above chart involve the numbers in Pascal’s triangle. Indeed, the reason that I chose to use 6 cards (as opposed to any other number of cards) is that the bottom row has only 1, 5, and 10 as coefficients, and 10 \equiv 1 (\mod 9). Therefore, the only tricky part of the calculation is multiplying b+e by 5, as the final answer can then be found by adding the remaining four numbers.

My students usually find this to be a clever application of Pascal’s triangle for impressing their friends after class.

green lineP.S. After typing this series, it hit me that it’s really easy to do this trick mod 10 (which means getting rids of only the face cards prior to the trick). All the magician has to do is subtly ensure that the second and fifth cards are both even or both odd, so that b+e is even and hence 5(b+e) is a multiple of 10. Therefore, since 10c+10d is also a multiple of 10, the answer will be just a+f or a+f-10.

(If the magician can’t control the placement of the second and fifth cards so that one is even and one is odd, the answer will be just a+f+5 or a+f-5.)

Henceforth, I’ll be doing this trick mod 10 instead of mod 9.

 

My Mathematical Magic Show: Part 8b

This mathematical trick was not part of my Pi Day magic show but probably should have been… I’ve performed this for my Precalculus classes in the past but flat forgot about it when organizing my Pi Day show. The next time I perform a magic show, I’ll do this one right after the 1089 trick. (I think I learned this trick from a Martin Gardner book when I was young, but I’m not sure about that.)

Here’s a description of the trick. I give my audience a deck of cards and ask them to select six cards between ace and nine (in other words, no tens, jacks, queens, or kings). The card are placed face up, side by side.

After about 5-10 seconds, I secretly write a pull out a card from the deck and place it face down above the others.

 

pascalcardtrick1

I then announce that we’re going to some addition together… with the understanding that I’ll never write down a number larger than 9. For example, the 4 and 6 of spades are next to each other. Obviously, 4+6 = 10, but my rule is that I’m going to write down a number larger than 9. So I’ll subtract 9 whenever necessary: 10-9 = 1. Since 1 corresponds to ace, I place an ace about the 4 and 6 of spades.

Continuing in this way (and having the audience participate in the arithmetic so that this doesn’t get boring), I eventually get to this position:

pascalcardtrick5

Finally, I add the two cards at the top (and, in this case, subtract 9) to get 6+9-9 = 6, and I dramatically turn over the last card to reveal a 6.

pascalcardtrick6

How does this trick work? This is an exercise in modular arithmetic (see also Wikipedia). Suppose that the six cards are a, b, c, d, e, and f. Forgetting for now about subtracting by 9, here’s how the triangle unfolds (turning the triangle upside down):

a \qquad \qquad \qquad \quad b \qquad \qquad \qquad \quad c \qquad \qquad \qquad \quad d \qquad \qquad \qquad \quad e \qquad \qquad \qquad \quad f

a+b \qquad \qquad \qquad b+c \qquad \qquad \qquad c+d \qquad \qquad \qquad d+e \qquad \qquad \qquad e+f

a+2b+c \qquad \qquad b+2c+d \qquad \qquad c+2d+e \qquad \qquad d+2e+f

a+3b+3c+d \qquad \quad b+3c+3d+e \qquad \quad c+3d+3e+f

a+4b+6c+4d+e \qquad b+4c+6d+5e+f

a+5b+10c+10d+5e+f

 Therefore, the top card will simply be a+5b+10c+10d+5e+f minus a multiple of 9.

That’s a pretty big calculation for the magician to do on the spot. Fortunately, 9c + 9d is also a multiple of 9, and so the top card will be

 a+5b+10c+10d+5e+f - (9c + 9d) minus a multiple of 9, or

5(b+e) + a +  c + d +  f minus a multiple of 9.

For the case at hand, b = 6 and e =8, so 5(b+e) = 70. That’s still a big number to keep straight when performing the trick. However, since I’m going to be subtracting 9’s anyway, I can do this faster by replacing the 8 by 8 - 9 = -1. So, for the purposes of the trick, 5(b+e) = 5 \times (6-1) = 25, and I subtract 18 to get 7.

I now add the rest of the cards, subtracting 9 as I go along. For this example, I’d add the 2 first to get 9, which is 0 after subtracting another 9. I then add the remaining cards of 4, 3, and 8 (remembering that the 8 is basically 8-9 = -1, yielding 4+3-1 = 6. So the top card has to be 6.

The key point of this calculation is to subtract 9 whenever possible to keep the numbers small, making it easier to do in your head when performing the trick.

 

My Mathematical Magic Show: Part 8a

This mathematical trick was not part of my Pi Day magic show but probably should have been… I’ve performed this for my Precalculus classes in the past but flat forgot about it when organizing my Pi Day show. The next time I perform a magic show, I’ll do this one right after the 1089 trick. (I think I learned this trick from a Martin Gardner book when I was young, but I’m not sure about that.)

Here’s a description of the trick. I give my audience a deck of cards and ask them to select six cards between ace and nine (in other words, no tens, jacks, queens, or kings). The card are placed face up, side by side.

After about 5-10 seconds, I secretly write a pull out a card from the deck and place it face down above the others.

 

 

pascalcardtrick1

I then announce that we’re going to some addition together… with the understanding that I’ll never write down a number larger than 9. For example, the 4 and 6 of spades are next to each other. Obviously, 4+6 = 10, but my rule is that I’m going to write down a number larger than 9. So I’ll subtract 9 whenever necessary: 10-9 = 1. Since 1 corresponds to ace, I place an ace about the 4 and 6 of spades.

Next, I consider the 6 of spades and 2 of diamonds. Adding, I get 8. That’s less than 9, so I pull an 8 out of the deck.

Next, 2+3 = 5, so I pull out a 5 from the deck.

Next, 8+8=16, and 16-9=7. So I pull out a 7.

(To keep this from getting dry, I have the audience perform the arithmetic with me.)

pascalcardtrick2

On the the next row. The next cards are 1+8 = 9, 8+5-9 = 4, 5+2 =7, and 2+7 = 9.

pascalcardtrick3

On the the next row. The next cards are 9+4-9=4, $latex $4+7-9 = 2$, and 7+9-9 = 7.

pascalcardtrick4

Almost there: 4+2 = 6 and 2+7= 9.

 

pascalcardtrick5

Finally, 6+9-9 = 6, and I dramatically turn over the last card to reveal a 6.

 

pascalcardtrick6

 

Naturally, everyone wonders how I knew what the last card would be without first getting all of the cards in the middle. I’ll discuss this in tomorrow’s post.

 

 

 

Engaging students: Pascal’s triangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Roderick Motes. His topic, from Precalculus: Pascal’s triangle.

green line

History – What are the contributions of various cultures to this topic?

Through doing this project I learned that the history of Pascal’s triangle is actually pretty fascinating, and could be an excellent talking point for students.

Pascal’s Triangle was named after Blaise Pascal, who published the right angled version of the triangle, the binomial theorem, and the proof that n choose k corresponds to the kth element of the nth row of the triangle. But this wasn’t the first time interesting results about the triangle had been published, not even in the west.

The triangle was actually independently developed and worked on as early as the 11’th century in both China and modern day Iran. In China two mathematicians, Chia Hsien and Yang Hui, worked on the triangle and it’s applications to solving polynomials. Hsien used the triangle to aid in solving for cubic roots. Hui built upon the work of Hsien and actually gave us the first visual model of the triangle and used the triangle to aid in solving higher degree roots.

Pascals_triangle_China

Independently Omar Khayyam in Persia (modern Iran) used the triangle and binomial theorem (which was known to Arabic mathematicians at the time) to solve nth roots of polynomials.

In addition the triangle was used before Pascal to solve cubic equations, and in Europe in particular we get to the old controversy of Cardano and Del Ferro of ‘who found the general formula for cubic roots’ because another Italian man by the name of Niccolo Tartaglia claimed to have used the triangle to solve cubics and dervice the formula before Cardano published his formula.

So there were a variety of cultures who all independently recognized the significance of the triangle and used it well before Pascal. Consequently the triangle is called many things in many cultures. In China it is referred to as Yang Hui’s triangle, in Iran it is still called the Khayyam-Pascal triangle. All this goes to show that the history we think we know of mathematics may not be quite so true, and that mathematical understanding is the product of many cultures over many years.

green line

Technology- How can you effectively use technology to engage students on this subject?

There are a variety of technological resources you could use to craft a lesson. In particular I’m fond of the Texas Instruments exploration lessons. The lessons are available for free at education.ti.com and come with a slew of materials and handouts prepared for you. I’ve used the TI Nspire to teach the Law of Sines and the activity went tremendously well.

For Pascal’s Triangle and Binomial Theorem there are equivalent lessons with the TI Nspire and TI 84. The links are included at the end of this. The lessons allow the students to see Pascal’s triangle side by side with the triangle of coefficients which they are generating on the calculator. This could be backed up with having the students physically create the triangles on paper and see that they match up. The lesson then has the students conjecture what they believe the binomial theorem is.

This could be a powerful lesson for engaging learners of various strengths. Kinetic learners will love the physical action of the calculator, visual learners will love seeing the triangles update in real time.

green line

Curriculum- How can this topic be extended to your students future math courses?

Pascal’s triangle has a large relationship to probability and statistics. There are a variety of ways you can tie statistics lessons back to Pascal’s triangle and the binomial theorem. In particular we can examine how we might game a Pachinko machine in order to maximize our winnings.

Pachinko (or Plinko or a variety of other things depending on where you are) is fairly simple in idea.

You have a rectangular grid of pegs in which each row is slightly offset from the row above it. You drop a disc or puck of some kind down and attempt to get it into one of the small bins at the bottom. Sometimes prizes will be attached to certain bins (this is a popular carnival game) and sometimes money will (this is also a popular gambling game.)

The bin in which the puck will land follows a normal distribution based on the starting position. This is unsurprising and can be introduced very easily in a Statistics class when you’re teaching about probability distributions and normal distributions. What is more interesting is that this is very deeply related to Pascal’s Triangle.

Overlaying the triangle on top of the machine yields a triangle which shows the number of possible paths to get to each point. You can use this to make a statistical analysis and actually assign values to the probability of landing in a given spot. Using this knowledge you can game the machine and maximize your odds of getting the giant teddy bear or the fat stack of cash.

This application of Pascal’s triangle and its relationship to elementary combinatorics (which should hearken back to Middle School mathematics in addition to being extendable into Statistics,) is looked at in depth in a paper by Katie Asplund of Iowa State University. I have included this paper below. In addition to this suggestions she also relates a specific activity useful in the exploration where the students look at the various options of n choose k and relate the possibilities back to Pascal’s Triangle. I could not get the link for that specific activity as it requires access to Mathematics Teacher which I was unable to find using the UNT Library Resources.

plinko

References and Other Such Things

http://www.math.iastate.edu/thesisarchive/MSM/AsplundCCSS09.pdf

–          This paper is written by Katie Asplund. In it she explores a variety of patterns and connections between Pascal’s Triangle and various parts of the high school math curriculum. In particular she is interested in seeing how she can relate the patterns to her own high school pre calculus class. I recommend reading this entirely because it is simply illuminating and has quite a few suggestions you could implement.

http://pages.csam.montclair.edu/~kazimir/history.html

–          This website has a quick history of Pascal’s triangle as well as several applications. Using this and Wikipedia I was able to learn about the histories and cultures which led to our modern understanding of the triangle. In particular Omar Khayyam is a very interesting person to talk about if you feel like injecting some history of the Islamic Golden Age and the history of Mathematics after the fall of Rome. Khayyam was a Poet as well as a mathematician, and was one of the first to openly question Euclid’s use of the Parallel Postulate.

http://education.ti.com/calculators/downloads/US/Activities/Detail?id=11139&ref=%2fcalculators%2fdownloads%2fUS%2fActivities%2fSearch%2fKeywords%3fk%3dPascal

–          This is the TI Nspire activity on the Binomial Theorem and Pascal’s Triangle. It’s fairly straightforward but, like many of the TI Activities, it has some nice tricks that it uses the calculator to accomplish.