SOHCAHTOA

Years ago, when I first taught Precalculus at the college level, I was starting a section on trigonometry by reminding my students of the acronym SOHCAHTOA for keeping the trig functions straight:

\sin \theta = \displaystyle \frac{\hbox{Opposite}}{\hbox{Hypotenuse}},

\cos \theta = \displaystyle \frac{\hbox{Adjacent}}{\hbox{Hypotenuse}},

\tan \theta = \displaystyle \frac{\hbox{Opposite}}{\hbox{Adjacent}}.

At this point, one of my students volunteered that a previous math teacher had taught her an acrostic to keep these straight: Some Old Hippie Caught Another Hippie Tripping On Acid.

Needless to say, I’ve been passing this pearl of wisdom on to my students ever since.

10 Secret Trig Functions Your Math Teachers Never Taught You

Students in trigonometry are usually taught about six functions:

\sin \theta, \cos \theta, \tan \theta, \cot \theta, \sec \theta, \csc \theta

I really enjoyed this article about trigonometric functions that were used in previous generations but are no longer taught today, like \hbox{versin} \theta and \hbox{havercosin} \theta:

http://blogs.scientificamerican.com/roots-of-unity/10-secret-trig-functions-your-math-teachers-never-taught-you/

Naturally, Math With Bad Drawings had a unique take on this by adding a few more suggested functions to the list. My favorites:

Different Ways of Solving a Contest Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on different ways of solving the contest problem “If 3 \sin \theta = \cos \theta, what is \sin \theta \cos \theta?”

Part 1: Drawing the angle \theta

Part 2: A first attempt using a Pythagorean identity.

Part 3: A second attempt using a Pythagorean identity and the original hypothesis for \theta.

 

 

How I Impressed My Wife: Index

Some husbands try to impress their wives by lifting extremely heavy objects or other extraordinary feats of physical prowess.

That will never happen in the Quintanilla household in a million years.

But she was impressed that I broke an impasse in her research and resolved a discrepancy between Mathematica 4 and Mathematica 8 by finding the following integral by hand in less than an hour:

\displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x}

Yes, I married well indeed.

In this post, I collect the posts that I wrote last summer regarding various ways of computing this integral.

Part 1: Introduction
Part 2a, 2b, 2c, 2d, 2e, 2f: Changing the endpoints of integration, multiplying top and bottom by \sec^2 x, and the substitution u = \tan x.
Part 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i: Double-angle trig identity, combination into a single trig function, changing the endpoints of integration, and the magic substitution u = \tan \theta/2.
Part 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h: Double-angle trig identity, combination into a single trig function, changing the endpoints of integration, and contour integration using the unit circle
Part 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, 5j: Independence of the parameter a, the magic substitution u = \tan \theta/2, and partial fractions.
Part 6a, 6b, 6c, 6d, 6e, 6f, 6g:Independence of the parameter a, the magic substitution u = \tan \theta/2, and contour integration using the real line and an expanding semicircle.
Part 7: Concluding thoughts… and ways that should work that I haven’t completely figured out yet.

The antiderivative of 1/(x^4+1): Part 2

This antiderivative has arguable the highest ratio of “really hard to compute” to “really easy to write”:

\displaystyle \int \frac{1}{x^4 + 1} dx

To compute this integral, I will use the technique of partial fractions. This requires factoring the denominator over the real numbers, which can be accomplished by finding the roots of the denominator. In other words, I need to solve

x^4 + 1 = 0,

or

z^4 = -1.

I switched to the letter z since the roots will be complex. The four roots of this quartic equation can be found with De Moivre’s Theorem by writing

z = r (\cos \theta + i \sin \theta),

where r is a real number, and

-1 + 0i = 1(\cos \pi + \i \sin \pi)

By De Moivre’s Theorem, I obtain

r^4 (\cos 4\theta + i \sin 4 \theta) = 1 (\cos \pi + i \sin \pi).

Matching terms, I obtain the two equations

r^4 = 1 and 4\theta = \pi + 2\pi n

or

r = 1 and \theta = \displaystyle \frac{\pi}{4} + \displaystyle \frac{\pi n}{2}

or

r = 1 and \theta = \displaystyle \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}.

This yields the four solutions

z = 1 \left[ \cos \displaystyle \frac{\pi}{4} + i \sin \frac{\pi}{4} \right] = \displaystyle \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}

z = 1 \left[ \cos \displaystyle \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right] = -\displaystyle \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}

z = 1 \left[ \cos \displaystyle \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right] = -\displaystyle \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}

z = 1 \left[ \cos \displaystyle \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right] = \displaystyle \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}

Therefore, the denominator x^4 + 1 can be written as the following product of linear factors over the complex plane:

\displaystyle \left(x - \left[ \displaystyle \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right] \right)\left(x - \left[ \displaystyle \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right] \right) \left(x - \left[ -\displaystyle \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right] \right) \left(x - \left[ - \displaystyle \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right] \right)

or

\displaystyle \left(\left[x - \displaystyle \frac{\sqrt{2}}{2} \right] - i \frac{\sqrt{2}}{2} \right)\left( \left[ x - \displaystyle \frac{\sqrt{2}}{2} \right] + i \frac{\sqrt{2}}{2} \right) \left( \left[ x + \displaystyle \frac{\sqrt{2}}{2} \right] - i \frac{\sqrt{2}}{2} \right) \left( \left[ x + \displaystyle \frac{\sqrt{2}}{2} \right] + i \frac{\sqrt{2}}{2} \right)

or

\displaystyle \left(\left[x - \displaystyle \frac{\sqrt{2}}{2} \right]^2 - \left[ i \frac{\sqrt{2}}{2} \right]^2 \right) \left( \left[ x + \displaystyle \frac{\sqrt{2}}{2} \right]^2 - \left[i \frac{\sqrt{2}}{2} \right]^2 \right)

or

\displaystyle \left(x^2 - x \sqrt{2} + \displaystyle \frac{1}{2} + \displaystyle \frac{1}{2}\right) \left(x^2 + x \sqrt{2} + \displaystyle \frac{1}{2} + \displaystyle \frac{1}{2}\right)

or

\displaystyle \left(x^2 - x \sqrt{2} + 1 \right) \left(x^2 + x \sqrt{2} + 1\right).

We have thus factored the denominator over the real numbers:

\displaystyle \int \frac{dx}{x^4 + 1} = \displaystyle \int \frac{dx}{\left(x^2 - x \sqrt{2} + 1 \right) \left(x^2 + x \sqrt{2} + 1\right)} ,

and the technique of partial fractions can be applied.

I’ll continue the calculation of this integral with tomorrow’s post.

Different ways of solving a contest problem (Part 3)

The following problem appeared on the American High School Mathematics Examination (now called the AMC 12) in 1988:

If 3 \sin \theta = \cos \theta, what is \sin \theta \cos \theta?

When I presented this problem to a group of students, I was pleasantly surprised by the amount of creativity shown when solving this problem.

Yesterday, I presented a solution using a Pythagorean identity, but I was unable to be certain if the final answer was a positive or negative without drawing a picture. Here’s a third solution that also use a Pythagorean trig identity but avoids this difficulty. Again, I begin by squaring both sides.

9 \sin^2 \theta = \cos^2 \theta

9 (1 - \cos^2 \theta) = \cos^2 \theta

9 - 9 \cos^2 \theta = \cos^2 \theta

9 = 10 \cos^2 \theta

\displaystyle \frac{9}{10} = \cos^2 \theta

\displaystyle \pm \frac{3}{\sqrt{10}} = \cos \theta

Yesterday, I used the Pythagorean identity again to find \sin \theta. Today, I’ll instead plug back into the original equation 3 \sin \theta = \cos \theta:

3 \sin \theta = \cos \theta

3 \sin \theta = \displaystyle \frac{3}{\sqrt{10}}

\sin \theta = \displaystyle \pm \frac{1}{\sqrt{10}}

Unlike the example yesterday, the signs of \sin \theta and \cos \theta must agree. That is, if \cos \theta = \displaystyle \frac{3}{\sqrt{10}}, then \sin \theta = \displaystyle \frac{1}{\sqrt{10}} must also be positive. On the other hand, if \cos \theta = \displaystyle -\frac{3}{\sqrt{10}}, then \sin \theta = \displaystyle -\frac{1}{\sqrt{10}} must also be negative.

If they’re both positive, then

\sin \theta \cos \theta = \displaystyle \left( \frac{1}{\sqrt{10}} \right) \left( \frac{3}{\sqrt{10}} \right) =\displaystyle \frac{3}{10},

and if they’re both negative, then

\sin \theta \cos \theta = \displaystyle \left( -\frac{1}{\sqrt{10}} \right) \left( -\frac{3}{\sqrt{10}} \right) = \displaystyle \frac{3}{10}.

Either way, the answer must be \displaystyle \frac{3}{10}.

This is definitely superior to the solution provided in yesterday’s post, as there’s absolutely no doubt that the product \sin \theta \cos \theta must be positive.

Different ways of solving a contest problem (Part 2)

The following problem appeared on the American High School Mathematics Examination (now called the AMC 12) in 1988:

If 3 \sin \theta = \cos \theta, what is \sin \theta \cos \theta?

When I presented this problem to a group of students, I was pleasantly surprised by the amount of creativity shown when solving this problem.

Yesterday, I presented a solution using triangles. Here’s a second solution that I received: begin by squaring both sides and using a Pythagorean trig identity.

9 \sin^2 \theta = \cos^2 \theta

9 (1 - \cos^2 \theta) = \cos^2 \theta

9 - 9 \cos^2 \theta = \cos^2 \theta

9 = 10 \cos^2 \theta

\displaystyle \frac{9}{10} = \cos^2 \theta

\displaystyle \pm \frac{3}{\sqrt{10}} = \cos \theta

We use the Pythagorean identity again to find \sin \theta:

\displaystyle \frac{9}{10} = \cos^2 \theta

\displaystyle \frac{9}{10} = 1 - \sin^2 \theta

\sin^2 \theta = \displaystyle \frac{1}{10}

\sin \theta = \displaystyle \pm \frac{1}{\sqrt{10}}

Therefore, we know that

\sin \theta \cos \theta = \displaystyle \left( \pm \frac{1}{\sqrt{10}} \right) \left( \pm \frac{3}{\sqrt{10}} \right) = \displaystyle \pm \displaystyle \frac{3}{10},

so the answer is either \displaystyle \frac{3}{10} or \displaystyle -\frac{3}{10}. However, this was a multiple-choice contest problem and \displaystyle -\frac{3}{10} was not listed as a possible answer, and so the answer must be \displaystyle \frac{3}{10}.

green lineFor a contest problem, the above logic makes perfect sense. However, the last step definitely plays to the fact that this was a multiple-choice problem, and the concluding step would not have been possible had \displaystyle -\frac{3}{10} been given as an option.