How I Impressed My Wife: Part 4h

So far in this series, I have used three different techniques to show that

Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x} = \displaystyle \frac{2\pi}{|b|}.

For the third technique, a key step in the calculation was showing that the residue of the function

f(z) = \displaystyle \frac{1}{z^2 + 2\frac{S}{R}z + 1} = \displaystyle \frac{1}{(z-r_1)(z-r_2)}

at the point

r_1 = \displaystyle \frac{-S + \sqrt{S^2 -R^2}}{R}

was equal to

\displaystyle \frac{R}{ 2 \sqrt{S^2-R^2} }.

Initially, I did this by explicitly computing the Laurent series expansion about z = r_1 and identifying the coefficient for the term (z-r_1)^{-1}.

In this post, I’d like to discuss another way that this residue could have been obtained.
green line

Notice that the function f(z) has the form \displaystyle \frac{g(z)}{(z-r) h(z)}, where g and h are differentiable functions so that g(r) \ne 0 and h(r) \ne 0. Therefore, we may rewrite this function using the Taylor series expansion of \displaystyle \frac{g(z)}{h(z)} about z = r:

f(z) = \displaystyle \frac{1}{z-r} \left[ \frac{g(z)}{h(z)} \right]

f(z) = \displaystyle \frac{1}{z-r} \left[ a_0 + a_1 (z-r) + a_2 (z-r)^2 + a_3 (z-r)^3 + \dots \right]

f(z) = \displaystyle \frac{a_0}{z-r} + a_1 + a_2 (z-r) + a_3 (z-r)^2 + \dots


\displaystyle \lim_{z \to r} (z-r) f(z) = \displaystyle \lim_{z \to r} \left[ a_0 + a_1 (z-r) + a_2 (z-r)^2 + a_3 (z-r)^3 + \dots \right] = a_0

Therefore, the residue at z = r can be found by evaluating the limit \displaystyle \lim_{z \to r} (z-r) f(z). Notice that

\displaystyle \lim_{z \to r} (z-r) f(z) = \displaystyle \lim_{z \to r} \frac{(z-r) g(z)}{(z-r) h(z)}

= \displaystyle \lim_{z \to r} \frac{(z-r) g(z)}{H(z)},

where H(z) = (z-r) h(z) is the original denominator of f(z). By L’Hopital’s rule,

a_0 = \displaystyle \lim_{z \to r} \frac{(z-r) g(z)}{H(z)} = \displaystyle \lim_{z \to r} \frac{g(z) + (z-r) g'(z)}{H'(z)} = \displaystyle \frac{g(r)}{H'(r)}.

For the function at hand, g(z) \equiv 1 and H(z) = z^2 + 2\frac{S}{R}z + 1, so that H'(z) = 2z + 2\frac{S}{R}. Therefore, the residue at z = r_1 is equal to

\displaystyle \frac{1}{2r_1+2 \frac{S}{R}} = \displaystyle \frac{1}{2 \displaystyle \frac{-S + \sqrt{S^2 -R^2}}{R} + 2 \frac{S}{R}}

= \displaystyle \frac{1}{ ~ 2 \displaystyle \frac{\sqrt{S^2 -R^2}}{R} ~ }

= \displaystyle \frac{R}{2 \sqrt{S^2-R^2}},

matching the result found earlier.


Leave a comment

1 Comment

  1. How I Impressed My Wife: Index | Mean Green Math

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: