How I Impressed My Wife: Part 5e

Earlier in this series, I gave three different methods of showing that

Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x} = \displaystyle \frac{2\pi}{|b|}.

Using the fact that Q is independent of a, I’ll now give a fourth method.
green lineSince Q is independent of a, I can substitute any convenient value of a that I want without changing the value of Q. As shown in previous posts, substituting a =0 yields the following simplification:

Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x}

= \displaystyle \int_{0}^{2\pi} \frac{dx}{\cos^2 x + 2 \cdot 0 \cdot \sin x \cos x + (0^2 + b^2) \sin^2 x}

= \displaystyle \int_{0}^{2\pi} \frac{dx}{\cos^2 x + b^2 \sin^2 x}

= \displaystyle \int_{-\pi}^{\pi} \frac{dx}{\cos^2 x + b^2 \sin^2 x}

= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{u^4 + (4 b^2 - 2) u^2 + 1}

To evaluate this integral, I need to find the four complex roots of the denominator:

u^4 + (4b^2 - 2) u^2 + 1 = 0

u^2 = \displaystyle \frac{ 2 - 4b^2 \pm \sqrt{(4b^2 - 2)^2 - 4}}{2}

u^2 = \displaystyle \frac{2 - 4b^2 \pm \sqrt{16b^4 - 16b^2 - 4 + 4}}{2}

u^2 = \displaystyle \frac{2 - 4b^2 \pm \sqrt{16b^4 - 16b^2}}{2}

u^2 = \displaystyle \frac{2 - 4b^2 \pm 4|b| \sqrt{b^2 - 1}}{2}

u^2 = \displaystyle 1 - 2b^2 \pm 2|b| \sqrt{b^2 - 1}

To solve for u, there are three separate cases that have to be considered: |b| = 1, |b| > 1, and |b| < 1. I’ll begin with the easiest case of |b| = 1. In this case, the integral Q is easy to evaluate:

= Q \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{u^4 + (4 b^2 - 2) u^2 + 1}

= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{u^4 + (4 \cdot [1^2] - 2) u^2 + 1}

= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{u^4 + 2 u^2 + 1}

= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{(1+u^2)^2}

=\displaystyle \int_{-\infty}^{\infty} \frac{ 2 du}{1+u^2}

=\displaystyle \left[ 2\tan^{-1} x \right]^{\infty}_{-\infty}

=\displaystyle \left[ 2 \frac{\pi}{2} - 2 \frac{-\pi}{2} \right]

= 2\pi

This matches the expected answer of Q = \displaystyle \frac{2\pi}{|b|} since I used the assumption that |b| = 1.

green line

I’ll continue with this fourth evaluation of the integral, examining the two remaining cases, in future posts.

Leave a comment

1 Comment

  1. How I Impressed My Wife: Index | Mean Green Math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

%d bloggers like this: