# How I Impressed My Wife: Part 2c

Some husbands try to impress their wives by lifting extremely heavy objects or other extraordinary feats of physical prowess.

That will never happen in the Quintanilla household in a million years.

But she was impressed that I broke an impasse in her research and resolved a discrepancy between Mathematica 4 and Mathematica 8 by finding the following integral by hand in less than an hour: $Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x}$

In this series, I’ll explore different ways of evaluating this integral. So far in this series, I’ve shown that $Q = 2 \displaystyle \int_{-\pi/2}^{\pi/2} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x}$ $= 2 \displaystyle \int_{-\pi/2}^{\pi/2} \frac{\sec^2 x dx}{1 + 2 a \tan x + (a^2 + b^2) \tan^2 x}$

I now employ the substitution $u = \tan x$, so that $du = \sec^2 x dx$. Also, the endpoints change from $-\pi/2 < x < \pi/2$ to $-\infty < u < \infty$, so that $Q = 2 \displaystyle \int_{-\infty}^{\infty} \frac{du}{1 + 2 a u + (a^2+b^2) u^2}$ I’ll continue with the evaluation of this integral in tomorrow’s post.

## One thought on “How I Impressed My Wife: Part 2c”

This site uses Akismet to reduce spam. Learn how your comment data is processed.