# How I Impressed My Wife: Part 5j

Earlier in this series, I gave three different methods of showing that $Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x} = \displaystyle \frac{2\pi}{|b|}.$

Using the fact that $Q$ is independent of $a$, I’ll now give a fourth method. Since $Q$ is independent of $a$, I can substitute any convenient value of $a$ that I want without changing the value of $Q$. As shown in previous posts, substituting $a =0$ yields the following simplification: $Q = \displaystyle \int_0^{2\pi} \frac{dx}{\cos^2 x + 2 a \sin x \cos x + (a^2 + b^2) \sin^2 x}$ $= \displaystyle \int_{0}^{2\pi} \frac{dx}{\cos^2 x + 2 \cdot 0 \cdot \sin x \cos x + (0^2 + b^2) \sin^2 x}$ $= \displaystyle \int_{0}^{2\pi} \frac{dx}{\cos^2 x + b^2 \sin^2 x}$ $= \displaystyle \int_{-\pi}^{\pi} \frac{dx}{\cos^2 x + b^2 \sin^2 x}$ $= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{u^4 + (4 b^2 - 2) u^2 + 1}$ $= \displaystyle \int_{-\infty}^{\infty} \frac{ 2(1+u^2) du}{ ([u - \sqrt{1-b^2}]^2 +b^2)([u + \sqrt{1-b^2}]^2 +b^2}$ $\displaystyle \int_{-\infty}^{\infty} \left[ \frac{1}{[u - \sqrt{1-b^2}]^2 +b^2} + \frac{1}{[u + \sqrt{1-b^2}]^2 +b^2} \right] du$

if $|b| < 1$. (The cases $|b| = 1$ and $|b| > 1$ have already been handled earlier in this series.)

To complete the calculation, I employ the now-familiar antiderivative $\displaystyle \int \frac{dx}{x^2 + b^2} = \displaystyle \frac{1}{|b|} \tan^{-1} \left( \frac{x}{b} \right)$.

Using this antiderivative and a simple substitution, I see that $Q = \displaystyle \left[ \frac{1}{|b|} \tan^{-1} \left( \frac{u - \sqrt{1-b^2}}{b} \right) + \frac{1}{|b|} \tan^{-1} \left( \frac{u - \sqrt{1-b^2}}{b} \right) \right]^{\infty}_{-\infty}$ $= \displaystyle \frac{1}{|b|} \left[ \left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \left( \frac{-\pi}{2} + \frac{-\pi}{2} \right) \right]$ $= \displaystyle \frac{2\pi}{|b|}$.

This completes the fourth method of evaluating the integral $Q$, using partial fractions. There’s at least one more way that the integral $Q$ can be calculated, which I’ll begin with tomorrow’s post.

## One thought on “How I Impressed My Wife: Part 5j”

This site uses Akismet to reduce spam. Learn how your comment data is processed.