# Predicate Logic and Popular Culture (Part 199): Justin Bieber

Let $T$ be the set of all times, let $K(t)$ be the proposition “You knock me down at time $t$,” and let $G(t)$ be the proposition “I am on the ground at time $t$.” Translate the logical statement $\forall t \in T(K(t) \longrightarrow \lnot (\forall s \ge t (G(s))))$.

This matches part of the chorus of “Never Say Never” by Justin Bieber.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 198): Smash Mouth

Let $P$ be the set of all people, let $T$ be the set of all times, and let $R(x,t)$ be the proposition “ $x$ told me at time $t$ that the world is going to roll me. Translate the logical statement $\exists x \in P \exists t \in T (R(x,t))$.

This matches the opening line of “All Star” by Smash Mouth.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 197): Frank Sinatra

Let $p$ be the proposition “I’ve been up,” let $q$ be the proposition “I’ve been down,” let $r$ be the proposition “I’ve been over,” and let $s$ be the proposition “I’ve been out.” Translate the logical statement $p \land q \land r \land s$.

This matches a quote from “That’s Life” by Frank Sinatra.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 196): Taylor Swift

Let $P$ be the set of all people, let $F(x)$ be the proposition “You find $x$,” and let $L(x)$ be the proposition “ $x$ is like me.” Translate the logical statement $\forall x \in P (F(x) \Longrightarrow \lnot L(x))$.

This matches a quote from “ME!” by Taylor Swift.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 195): Hannah Montana

Let $p$ be the proposition “We are a movie,” let $q$ be the proposition “You are the right guy,” and let $r$ be the proposition “I am the best friend.” Translate the logical statement $p \Longrightarrow (q \land r)$.

This matches a quote from the Hannah Montana song “If We Were a Movie.”

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 194): Dragon Ball

Let $P$ be the set of all people, let $P(x)$ be the proposition “$x$ preaches about justice,” and let $G(x)$ be the proposition “ $x$ is a good guy.” Translate the logical statement $\forall x \in P (P(x) \Longrightarrow \lnot G(x))$.

This matches a quote from the Dragon Ball franchise. Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 193): Randy Travis

Let $T$ be the set of all time, and let $L(t)$ be the proposition “I am going to love you at time $t$.” Translate the logical statement $\forall t \in T (L(t))$.

This matches a chorus of the famous Randy Travis song.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Solving a Math Competition Problem: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on an interesting math competition problem. This series was actually written by my friend Jeff Cagle, department head for mathematics at Chapelgate Christian Academy, as he tried technique after technique to solve this problem. I thought that his resolution to the problem was an excellent example of the process of mathematical problem-solving, and (with his permission) I am posting the process of his solution here. (For the record, I have no doubt that I would not have been able to solve this problem.)

Part 1: Statement of the problem.

Part 2: Initial thoughts on getting a handle on the problem.

Part 3: Initial insight.

Part 4: Geometric insight with a Riemann sphere.

Part 6: Getting past the roadblock.

Part 7: Insight.

Part 8: Proof of insight.

Part 9: Alternate solution (now that we know the answer).

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The following links comprised my series on the Wason Selection Task.

Part 1: Statement of the problem.

Part 2: Answer of the problem.

Part 3: Pedagogical thoughts about the problem, including variants.

# Predicate Logic and Popular Culture (Part 192): Overwatch

Let $P$ be the set of all people, let $H(x)$ be the proposition “ $x$ is a hero,” and let $D(x)$ be the proposition “ $x$ dies.” Translate the logical statement $\forall x in P (H(x) \Rightarrow \lnot D(x))$.

This matches a line from the videogame “Overwatch.”

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.