In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Peter Buhler. His topic, from Algebra II/Precalculus: simplifying rational expressions.

A2. How could you as a teacher create an activity or project that involves your topic?

One activity that could be performed when introducing rational expressions is to demonstrate the reason for simplifying. Before teaching students to simplify, instead ask them to evaluate the expressions given various x values. As they struggle through the painstaking process of taking squares, distributing, multiplying, adding and subtracting as they attempt to evaluate the rational expression, take note of how long it may take the students. Then have several students share their method. Following the student sharing, show your efficient method that allows you to simplify the expression before beginning to evaluate.

This not only shows the students that it is quicker, but it often provides more accurate answers to the process that must be taken to “cancel” the terms and then evaluate. Students should be more willing to participate in the following lesson on simplification due to the desire to do less work. This could also be an opportunity to discuss why it is often helpful to look for “shortcuts” or tools that can be used to simplify long or tricky problems into something manageable, even by high school students.

B2. How does this topic extend what your students should have learned in previous courses?

This topic actually extends several previous topics seen in middle school mathematics. One of these topics is reducing fractions. This actually builds on the topic of finding the greatest common factor (GCF), which students learn in elementary school. To reduce a fraction, students find a GCF from both the top and bottom of the fraction, and then simply eliminate that factor leaving the expression in a simplified form. This could be utilized to introduce the idea of simplifying rational expressions, as students will likely be familiar with reducing fractions to their most simplified form.

This can also be applied to multiplying by fractions, as the GCF can be pulled out of the top and bottom of the fractions and simplified, making the multiplication of the fraction simpler. One last possible application could be in solving proportions, as students are typically taught to simplify the proportions before attempting to solve. The common theme in all of these is simplifying in order to make a problem easier and is a more efficient process for most students.

D2. How was this topic adopted by the mathematical community?

There are many advanced applications of simplifying rational expressions. One such function is the Pade approximant, which is an approximation of a rational function of a given order. It was created by Henri Pade in 1890 and has been used to model certain rational functions. While this is certainly an advanced rational expression, it still holds true as there is a polynomial on the top and the bottom, which can be factored and simplified.

Rational functions have also been commonly used to model certain equations in STEM field such as functions of wave patterns for molecular particles, various forces in physics, and other fields that take mathematical ideas and apply them to a science. As a teacher introducing the topic of simplifying these expressions, one could display various applications of these functions and how they are used in a day-to-day setting. Students should be able to see beyond the cut-and-dry steps of simplifying the expressions and understand the implications beyond what they are doing.

References:

http://blog.mrmeyer.com/2015/if-simplifying-rational-expressions-is-aspirin-then-how-do-you-create-the-headache/

https://en.wikipedia.org/wiki/Rational_function