# Engaging students: Finding the focus and directrix of a parabola

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Brittnee Lein. Her topic, from Precalculus: finding the focus and directrix of a parabola.

What are the contributions of various cultures to this topic?

Parabolas (as we know them) were first written about in Apollonius’s Conics. Apollonius stated that parabolas were the result of a plane cutting a double right circular cone at an angle parallel to the vertical angle (α). So, what does that actually mean?

Well, if we take a vertical line and intersect it with a straight line at a fixed point, and then rotate that straight line around the fixed point we form the shape below:

If the plane slices the cone at the angle β and β=α, a parabola is formed. This is still how we define parabolas today although you may not think about it that way. When you think of a parabola, you think of the equation $y = ax^2 +bx + c$. This equation is derived using the focus and the directrix. This video shows how to do so:

Understanding how the focus and directrix affect the equation of a parabola is crucial to understanding what each word means. According to mathwords.com, “For a given point, called the focus, and a given line not through the focus, called the directrix, a parabola is the locus of points such that the distance to the focus equals the distance to the directrix.” The directrix is a line perpendicular to the axis of symmetry and the focus falls on the line of the axis of symmetry.

How can technology be used to effectively engage students with this topic?

This desmos activity can be used to show students how changing the focus, directrix, and vertex of the parabola affects the graph. https://www.desmos.com/calculator/y90ffrzmco

From this, students can shift values of the vertex and see that the directrix stays constant when the x-value is changed and that the focus remains constant when the y-value is shifted. If students change the value of the focus, they can see how it stretches and contracts the width of the parabola and how the directrix shifts. They can also see that when the focus is negative, the parabola opens downward and the directrix is positive. This website: https://www.intmath.com/plane-analytic-geometry/parabola-interactive.php Is also very helpful in showing the relationships between the focus, directrix and the graph of the parabolas because students can clearly see that the distance between a point on the parabola and the focus and the distance between that same point and the directrix are equal.

What interesting (i.e., uncontrived) word problems using this topic can your students do now?

The website http://www.purplemath.com/modules/parabola4.htm has a lot of great real-world word problems involving finding the focus and the directrix of a parabola. For example, one of the questions is:

(This is a graph I made using desmos to model the situation at hand)

This problem requires a lot of prior knowledge of parabolas and really tests students’ ability to interpret information. From the question alone, the students can find the x-intercepts (-15,0) and (15,0) from the information “the base has a width of 30 feet”. They are also able to infer that the slope of the parabola will be negative because of the shape of an arch. The student must also know how to find the slope of the parabola using the x-intercepts, solving for the equation of the parabola using the x-intercepts and vertex and the equations for finding the focus and directrix from the given information. There are a few problems as involved as this one on the listed website above.

# Engaging students: Finite geometric series

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Caroline Wick. Her topic, from Precalculus: finite geometric series.

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Finite geometric series was a concept that began over 4500 year ago in ancient Egypt. The Egyptians used this method of finite geometric series mainly to “solve problems dealing with areas of fields and volumes of granaries” but used it for many other uses too, including the pyramids and math problems similar to those one might find on a STAAR test today (see D1, and F1).

There are seven houses; in each house, there are 7 cats; each cat kills seven mice; each mouse has eaten 7 grains of barley; each grain would have produced 7 hekat. What is the sum of all the enumerated things?

Years passed and finite geometric series were not revisited until around 350 BC by the Greeks, namely Archimedes, who came up with a solution to the math problem V=1/3Ah by finite calculations instead of limits. In addition, the idea that a finite sum could be procured from an infinite series was created in what is called the “Achilles Paradox” (D2, F2).

Years after this came Mathematicians in the middle ages, like Richard Swineshead or Nicole Oresme, who aided the world by further refining these series. This eventually led to the renowned Physicist Isaac Newton to “discover the geometric series” after studying mathematician John Wallis’s method of “finding area under a hyperbola” (F1). We can attribute almost all of what we know about geometric series’ to these fine gentlemen above, and they can only attribute what they know from the ancient Egyptians and Greeks.

How has this topic appeared in pop culture?

In 2002, PBS came out with a kids’ TV show called CyberChase, which is an entertaining cartoon about a bunch of kids who get pulled into “Cyber Space” to fight the bad guy, named Hacker, all while discovering and using different mathematical concepts that they learned along the way. Eleven seasons have passed since the shows beginning and it is still going strong, but one episode that still sticks out to me was their version of explaining geometric series to kids. The episode was called “Double trouble” and was the 9th episode of the second season. The specific geometric series involved in the episode was doubling, but the “real world” clip at the end stood out more vividly to me. After losing a chess game, the main character has to decide between paying the winner $5.00 or paying one penny for the first space on a chess board, then two pennies on the second, then four on the third, and continuing to double the previous number for every space on the entire chess board. Since the main character thought pennies were less, he decided on the second option, only realize after that he would have to pay way more than$5.00 in the end. This helped me understand the most basic geometric series when I was a kid, and has stuck with me to this day, so I am certain that it has and can stick in other students’ brains as well.

Here is the clip from the show:

How can this topic be used in your students’ future courses in math or science?

The idea of finite geometric series is typically lightly introduced around students’ sophomore year of high school when they take geometry, but it is not really expanded upon/explained until students reach Pre-Calculus. The specific TEKS related to this topic are located under Pre-Calculus in (5), (A)-(E) (Source B1). The concept is brought up again in Math Models with Applications and is used for understanding interest on a balance over a period of time, or “loan amortization.” The ideas can also be used to help understand difference equations that involve heat and cooling over a period of time, and how to predict what the temperature might be in the future, which is a concept that is important in the realm of science too.

When students get to college, finite geometric series are expanded upon even more when they take Calculus classes, and they will learn how to prove a series is finite using induction when they get to their Discrete Classes and Real Analysis classes. In the business realm, they will have to use it to predict monetary sums regarding interest and possible growth in a company, so likely no matter where a student ends up, s/he will have to use this important mathematical concept everywhere.

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Cody Jacobs. His topic, from Precalculus: using radians to measure angles instead of degrees

How could you as a teacher create an activity or project that involves your topic?

How can this topic be used in your students’ future courses in mathematics or science?

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

Desmos.com is yet again another great technological resource to use when introducing radians to the classroom. There is a great activity call “What is a Radian?” That introduces an activity student can do using a plate and folding it into different sections. I actually believe this is how I was introduced to radians in high school. The second part of the activity on desmos after you finish with the plate introduction, is asking students key questions. How many radians are in a certain degree measurements? How many degrees are in a certain radian measurement? As always desmos is still great at introducing radians and lets you easily monitor your students progress.

# Slightly Incorrect Ugly Mathematical Christmas T-Shirts: Part 2

This was another T-shirt that I found in my search for the perfect ugly mathematical Christmas sweater: https://www.amazon.com/Pascals-Triangle-Math-Christmas-shirt/dp/B07KJS5SM2/I love the artistry of this shirt; the “ornaments” at the corners of the hexagons and the presents under the tree are nice touches.

There’s only one small problem:

$\displaystyle {8 \choose 3} = \displaystyle {8 \choose 5} = \displaystyle \frac{8!}{3! \times 5!} = 56$.

Oops.

# Engaging students: Using Pascal’s triangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Rachel Delflache. Her topic, from Precalculus: using Pascal’s triangle.

How does this topic expand what your students would have learned in previous courses?

In previous courses students have learned how to expand binomials, however after $(x+y)^3$ the process of expanding the binomial by hand can become tedious. Pascal’s triangle allows for a simpler way to expand binomials. When counting the rows, the top row is row 0, and is equal to one. This correlates to $(x+y)^0 =1$. Similarly, row 2 is 1 2 1, correlating to $(x+y)^2 = 1x^2 + 2xy + 1y^2$. The pattern can be used to find any binomial expansion, as long as the correct row is found. The powers in each term also follow a pattern, for example look at $(x+y)^4$:

$1x^4y^0 + 4x^3y^1 + 6x^2y^2 + 4x^1y^3 + 1x^0y^4$

In this expansion it can be seen that in the first term of the expansion the first monomial is raised to the original power, and in each term the power of the first monomial decreases by one. Conversely, the second monomial is raised to the power of 0 in the first term of the expansion, and increases by a power of 1 for each subsequent term in the expansion until it is equal to the original power of the binomial.

Sierpinski’s Triangle is triangle that was characterized by Wacław Sieriński in 1915. Sierpinski’s triangle is a fractal of an equilateral triangle which is subdivided recursively. A fractal is a design that is geometrically constructed so that it is similar to itself at different angles. In this particular construction, the original shape is an equilateral triangle which is subdivided into four smaller triangles. Then the middle triangle is whited out. Each black triangle is then subdivided again, and the patter continues as illustrated below.

Sierpinski’s triangle can be created using Pascal’s triangle by shading in the odd numbers and leaving the even numbers white. The following video shows this creation in practice.

What are the contributions of various cultures to this topic?

The pattern of Pascal’s triangle can be seen as far back as the 11th century. In the 11th century Pascal’s triangle was studied in both Persia and China by Oman Khayyam and Jia Xian, respectively. While Xian did not study Pascal’s triangle exactly, he did study a triangular representation of coefficients. Xian’s triangle was further studied in 13th century China by Yang Hui, who made it more widely known, which is why Pascal’s triangle is commonly called the Yanghui triangle in China. Pascal’s triangle was later studies in the 17th century by Blaise Pascal, for whom it was named for. While Pascal did not discover the number patter, he did discover many new uses for the pattern which were published in his book Traité du Triangle Arithméthique. It is due to the discovery of these uses that the triangle was named for Pascal.

# Engaging students: Defining sine, cosine and tangent in a right triangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Jessica Williams. Her topic, from Precalculus: defining sine, cosine and tangent in a right triangle.

How could you as a teacher create an activity or project that involves your topic?

I know of a good project/activity for the students to do that will be extremely engaging. You could either do this for an elaborate activity for your students or maybe an opening activity for day 2 of a lesson. For my class, I would get a square cookie cake, and have the slices cut into right triangles. I would allow each student to have a piece (but not eat it just yet). The students will be provided with rulers and a protractor. The students will each measure the hypotenuse of their cookie cake and the degree of whichever angle you would like them to measure, however each student should be measuring the same parts so do this unanimously). As a class, decide on an average for the measurements for everyone to use so that the data is not off. Then take the supplies away from the students and ask the students to find the rest of the missing sides and angles of their piece of cookie cake. They will also be provided with a worksheet to go along with this activity. This is a good review activity or al elaborate activity to allow further practice of real world application of right triangle trigonometry. Then go over as a class step by step how they solved for their missing angles and side lengths and make each group be accountable for sharing one of them. This allows the students to all be actively participating. Through out the lesson, make sure to tell the kids as long as they are all participating they will get to eat their slice when the lesson is done. Lastly, allow the students to eat their slice of cookie cake.

How does this topic extend what your students should have learned in previous courses?

Prior to learning about right triangle trigonometry the students will know how to use the Phythagorean Theorem to find how long the missing side length is of a right triangle. The students know basic triangle information such as, the sum of the angles in a triangle is 180 degrees. The students already know the difference between the hypotenuse and the other two legs. The students know that hypotenuse will be the longest leg and the leg across from the 90 degree angle. The students will also know the meaning of a fraction or ratio. The students may need some refreshing of memory on some parts of prior knowledge, but as teachers we know this is an extremely important part of a lesson plan. Even as teacher we tend to forget things and require a jog of memory. A simple activity such as headbands or a kahoot with vocabulary would be an excellent idea for accessing the students prior knowledge. This allows the students to formally assess themselves and where they stand with the knowledge. Also, it allows the teacher to formally assess the students and see what they remember or parts they are struggling on. This allows the teacher to know what things to spend more time on.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

Technology is always an amazing aspect of the classroom. Like stated above, a vocab review using headbands or kahoot would be a good idea for this type of lesson that DEFINITELY needs prior knowledge to be applied in order to succeed. Also, showing the students how to plug in sine, cosine, and tangent is crucial. They have seen these buttons on the calculator but they do not know what they mean or how to use them. Using an online TI on display for the class is great. I had to do this with my 10th grade students to make sure they understood how to use the 3 buttons. Also, when using arcsin, arccos, and arctan it can be confusing. Using technology to show the class as a whole is the best route to go. Also, technology can used as review for a homework assignment or even extra credit for the students. It benefits them by getting extra review and extra credit points. I found a website called http://www.learnalberta.ca/content/mejhm/index.html?l=0&ID1=AB.MATH.JR.SHAP&ID2=AB.MATH.JR.SHAP.TRI&lesson=html/object_interactives/trigonometry/use_it.html , which is a golf game that requires review of triangles and trigonometry. It allows the students to practice the ratios of SOH-CAH-TOA using a given triangle.

# Engaging students: Half-life

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Kerryana Medlin. Her topic: working with the half-life of a radioactive element.

How can this topic be used in you students’ future courses in mathematics or science?

Depending on when they take precalculus, this topic may appear earlier or later in chemistry. The following is the list of TEKS for this topic in chemistry.

112.35. Chemistry (12) Science concepts. The student understands the basic processes of nuclear chemistry. The student is expected to:
(A) describe the characteristics of alpha, beta, and gamma radiation;
(B) describe radioactive decay process in terms of balanced nuclear equations; and
(C) compare fission and fusion reactions.

This is likely the most immediate application the students will encounter, but this topic also appears in calculus and, later, in the topic of differential equations, since it involves exponential decay. This topic can also be brought up in environmental science to mention the lifetime of radioactive isotopes. When a student crunches the numbers on the lifetimes of these isotopes, they can see that sometimes a small action has a huge ripple effect, especially for isotopes that humans bring into the picture.

What interesting things can you say about the people who contributed to the discovery and/ or the development of this topic?

Ernest Rutherford received a Nobel Prize in Chemistry in 1908 for his discovery of the half-life of radioactive materials and his insistence that we apply this information to find the Earth’s age (Mastin, 2009). This later became more of a reality when Willard Libby started to develop carbon dating in 1946 (Radiocarbon Dating). Since then, carbon dating has been used to find the age of historical artifacts and bones, allowing historians to find more accurate time frames of events.

Carbon is not the only radioactive isotope. There are others which come to mind more readily when the word “radioactive” is used. These are typically the elements used for nuclear reactors. These are elements which readily undergo nuclear fission, which is the splitting of atoms, which releases energy. Uranium and Plutonium are the most common of these isotopes. Uranium-235 is the most commonly used for reactors and bombs (Brain and Lamb, 2000). This is probably the more interesting part of half-lives of elements and can extend the learning to an environmental issue such as nuclear waste, which takes an extremely long time to decay and which the U.S. Government has, in the past, not handled so well. (But I am not going into that, lest I go on a rant).

The last piece of history worth mentioning is fairly recent (and can be seen in real life and in the game mentioned later in this paper) which is that half-lives are not so clear cut. There is definitely a lot of estimating involved in the accepted half-life values. There is an article about this if you are interested (http://iopscience.iop.org/article/10.1088/0026-1394/52/3/S51/pdf), but I will leave it at this: much like most mathematical models, there is error in the half-life model, and the model formed may be a best fit, but there are always outliers for data and while carbon dating and half-lives of Uranium can give great estimates of what we are working with, they are not perfect.

How can technology be used to effectively engage students with this topic?

For this topic, there is an interactive simulation posted on PHET. It lends itself to a guided worksheet which would allow students to use the simulations to create the functions for each half-life.
So the following would be an example of said worksheet without spaces for actual answers:

Radioactive Half-Life of Carbon-14 and Uranium-238

At the top of the game window are four different tabs: Half Life, Decay Rates, Measurement, and Dating Game. We will be going through each one in that order.

Some information about radioactive isotopes: An isotope is an element which has the same number of protons in its nucleus, but a differing number of neutrons, thus making it radioactive. These elements have lives which are defined by the time it takes to no longer be radioactive.

Part I: Half Life

Select the Carbon-14 atom and start placing the atoms in the white area. (The “add 10” tool is helpful here.) Then observe as each goes to Nitrogen-14 (This means the element is no longer radioactive and the radioactive isotope has run its course.)

What do you observe about the lives of the isotopes?

What time-frame do these lives fall into?

Do the same for Uranium-238 and record the time-frame.

Part II: Decay Rates

This part works by adjusting the slider and allowing the isotopes to run the course of their lives.

What does the graph on the bottom tell us?

How does one read the half-life of an isotope from this graph?

At what percent do we find the first half-life?

What is the half-life of Carbon-14 from this graph? Half-life of Uranium-238?

Part III: Measurement

On this one, you activate two separate events and then take readings of the amount of Carbon-14 and Uranium-238 in the objects.

Which item contains the Carbon-14? The Uranium-238?

Use the pause feature as you are taking the readings to find precise values of the half-lives.

At what percentages should we be reading the half-lives?

Use this data to create a function to model the half-life of both isotopes.

Part IV: Dating Game

Use your functions to estimate the date of two of the items (One C-14 and one U-238) in the dating game. Write down the name of the item and the estimated age of the item.

References:

Brain, Marshall and Lamb, Robert. (2000). How Nuclear Power Works. How Stuff Works. Retrieved from
https://science.howstuffworks.com/nuclear-power1.htm
Mastin, Luke. (2009). Important Scientists: Ernest Rutherford (1871-1937). The Physics of the Universe.

# Engaging students: Finding the equation of a circle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Kelsi Kolbe. Her topic, from Precalculus: finding the equation of a circle.

How can technology be used in order to engage the students on this topic?

A simple Desmos program can be used to see different circles and how the variables affect it. You can write a program on Desmos, where you have to manipulate a given circle to ‘collect all the stars.’ There are stars placed around where the circumference should be. Then the students you a variety of sliders to collect the stars. The sliders can change the radius, and move the circle left to right. I think this simple activity will introduce the parts of a circle equation, like the radius and the center, while the students have fun trying to beat their fellow classmates collect the most stars.

How could you as a teacher create an activity or project that involves your topic?

I think a circle themed “Clue” inspired activity could be fun. I would tell the students that there was a crime committed and the students had to use their math skills to figure out what the crime was, who did it, where they did it, and when they did it. The students would get an ‘investigation sheet’ to record their answers. Each group would start off with a question like, ‘Find the equation of a circle that has the center (2,3) and radius 7’. Each table would have an answer to the math questions that corresponds to a clue to answer one of the ‘who, what, where, where’ questions they are trying to figure out, and prompts the next question. Students would continue this process until one team thinks they have it and shouts “EUREKA!” then they say what they think happened and if they are right they win, if they aren’t we keep going until someone does.

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

Circles are seen in a lot of different Islamic Art. Islamic art is known for its geometrical mosaic art. They had a deep fascination with Euclidean geometry. The circle specifically holds meaning in the Islamic culture. The circle represents unity under a monotheistic God. Their religion is so important it can be seen throughout every aspect of their culture. The repetitiveness also symbolizes god infinite nature. For example, his infinite wisdom and love. Along with circles, the 8-point star is also seen as a very powerful symbol. It represents God’s light spreading over the world. The symbols are very important in the Islamic culture and is shown beautifully in a lot of their art. It’s beautiful how they can pack one art piece with so much geometry and also their beliefs.

# Engaging students: Exponential Growth and Decay

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Megan Termini. Her topic, from Precalculus: exponential growth and decay.

How could you as a teacher create an activity or project that involves your topic?

A fun and engaging activity for students learning about exponential growth and decay would be a zombie activity. The students will get a scenario about the zombie attacks and they will predict the way the zombie attacks will work. Then to begin, the teacher will be the only one infected and to show the infection, they will have a red dot on their hand. Then they will shut off the lights and turn them back on to indicate a new day. Then the teacher will “infect” one other student by putting a red dot on their hand. Then they will turn the lights off and turn back on for day 2. Then both the teacher and the infected student will both go “infect” one other person. Then it continues day by day until everyone in the class is infected. Then they will put their data in a table, graph it and can see that it is an exponential growth, then write an equation for it (Reference A). This is great way of getting the whole class involved and zombies are very popular with tv shows and movies. It also lets them explore, see the pattern, and try to come up with the equation on their own.

How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

A great use of technology for graphing exponential growth and decay is Desmos. Desmos lets the students take an equation and plug it in to see the graph. They are also able to change the window to see it better. It also will give you the table for the function that you inputted. It’s good for students to graph it on here to see the graph and also, they are able to click anywhere on the graph to see the point they want. This also would be a good program for them to check their work after trying the problem on their own first (Reference B). Another great website is Math Warehouse. This website lets students explore the graph of exponential functions. Students can type in their function and can graph it. It also lets you compare it to y=x, y=x2, and y=x3. It also has the properties for exponential growth and decay. This website is great for students to interact with exponential functions and also explore them (Reference C).

How can this topic be used in your students’ future courses in mathematics or science?

Exponential functions stay with you all through your school career. You use them in many mathematics courses like algebra, algebra 2, pre-calculus, calculus, etc. You also use them in science courses like biology, chemistry, physics, etc. Understanding how to graph exponential growth and decay functions is a very important tool for future courses. For example, in algebra 2 the students will be learning about logarithms and exponentials, and will have to graph both of them and know the difference between them. Another example is in biology, comparing the number of births and the number of deaths of a species. The data may show an exponential growth in the number of births and exponential decay in the number of deaths, and the students would need to know how to plot the data points and graph it. It is also important for them to understand what the graph means and not just how to graph it. These are skills students will need in not only their future mathematics and science courses, but also in their future careers. For example, a biologist who studies a species of animals might have an exponential decay of the animal and would track its progress every week or every day and graph it to show the decrease of the amount of that species. Many students may not realize it now, but graphing exponential growth and decay is an important topic to understand how to do and why it is important to learn.

References:

A. “Zombies: Exploring Exponential Growth.” BetterLesson, betterlesson.com/lesson/460610/zombies-exploring-exponential-growth.
B. “Exponential Growth and Decay.” Desmos Graphing Calculator, http://www.desmos.com/calculator/d7dnmu5cuq.
C. “Interactive Exponential Function Graph/Applet.” Exponential Growth/Decay Graph Applet . Explore graph and equation of exponential functions| Math Warehouse, http://www.mathwarehouse.com/exponential-growth-and-decay/interactive-exponential-graph-applet.php.

# Engaging students: Compound interest

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Michelle Contreras. Her topic, from Precalculus: compound interest.

How could you as a teacher create an activity or project that involves your topic?

Compound interest can be something difficult to understand sometimes. That’s why before I even start refreshing my future pre-calculus class about the general formulas they are going to be working with, I would like to start the lesson with a “game”/ activity. Starting class with this activity can be beneficial in the long run because they are going to be more willing to pay attention the rest of class. The game is my own little twist of what we know is the marshmallow game. In the marshmallow game the teacher hands a marshmallow to one of her students challenging him/her to just hold on to it for about 10 minutes and not eat it. If the student managed to hold on and not ingest the marshmallow then the student would get another extra marshmallow. The teacher then ups the reward to two marshmallows more if the student manages to not eat any of the two marshmallows already in their possession.

My own twist in this game is instead of handing one of my students a marshmallow and challenging him/her to not eat it, I would give the student a fun sized M&M’s baggy and challenge him/her with that particular candy. I would then tell my student if he/her manages to not eat the baggy of M&M’s for a minute I would give them another baggy at the end of the minute. While I’m waiting for this minute to be over I would instruct half of the class to give a 30 second argument of why he/she should eat the chocolate right then and there. Then I’ll instruct the other half of the class to make an argument against eating the chocolate for 30 seconds, making the choice for him/her even more difficult. If the student manages to not eat the M&M’s then I will hand him the other baggy of chocolates as promised, then ask the student to wait another minute and not eat the candy’s and this time he/she will get 2 more baggies. What I hope the students are taking from this activity is that they see the connection between waiting a period of time to get more of the desired item. I would explain at the end of the activity that compound interest works in similar ways. When you decided to leave some money untouched in a savings account for a certain amount of time, the compensation for leaving your money alone will be making more money overtime.

How did people’s conception of this topic change over time?

There has been a 360 degree change in the way we view compound interest today than how people/communities viewed it long time ago. There has been evidence in texts from the Christian and Islamic faith that talk about how compound interest is a sin or a usury. Back then the people thought if you lend money to a person there should be no interest being added to the loan because that would not be morally right to do to someone in need. Things have changed drastically since those times. We consider someone “smart” or being successful if you earn an interest in whatever it is they are doing. There was also talk about a Roman law where having interest on a loan was illegal. I believe many people changed their view or simply saw compound interest rate as something that would be beneficial financially because of what Albert Einstein once said. There’s speculation that he said “Compound Interest is the eighth wonder of the world. He who understands it, earns it…he who doesn’t….pays it.”

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

While searching online about compound interest I ran upon a really cool video clip from one of the episodes from the animated T.V show Futurama. In this video clip it talks about Fry, the main character in the T.V show, trying to find out how much money he has in his bank account after being accidently frozen for 1,000 years. The video clip itself is pretty interesting and funny so I believe it would capture the kiddo’s attention. I would probably start with this video the following class day after starting the compound interest lesson. Before showing the video clip to my students, I would explain to them the situation that Fry is in and will ask my kiddos to make a guess of how much money he has in his bank account just by letting them know he was frozen for 1,000 years. I would then proceed to show them the video clip and leave out the part where the lady say’s the amount of money currently in his bank account and have the kiddos calculate the amount themselves with the given principal, interest rate, and amount of time. After giving the kids 2 minutes I would reveal the answer by playing the full video.

References:

“The Marshmallow Game” https://blog.kasasa.com/2016/04/marshmallow-game-compound-interest/
“Usury: a Universal Sin” http://www.giveshare.org/BibleStudy/050.usury.html