250,000 page views

I’m taking a break from my usual posts on mathematics and mathematics education to note a symbolic milestone: meangreenmath.com has had more than 250,000 total page views since its inception in June 2013. Many thanks to the followers of this blog, and I hope that you’ll continue to find this blog to be a useful resource to you.

green line

Twenty most viewed individual posts:

  1. All I want to be is a high school teacher. Why do I have to take Real Analysis?
  2. Analog clocks
  3. Anatomy of a teenager’s brain
  4. Beautiful dance moves
  5. Finger trick for multiplying by 9
  6. Full lesson plan: magic squares
  7. Full lesson plan: Platonic solids
  8. Fun with dimensional analysis
  9. High-pointing a football?
  10. Importance of the base case in a proof by induction
  11. Infraction
  12. Math behind Super Mario
  13. My “history” of solving cubic, quartic and quintic equations
  14. Sometimes, violence is the answer
  15. Student misconceptions about PEMDAS
  16. Teaching the Chain Rule inductively
  17. Thoughts on silly viral math puzzles
  18. Valentine’s Day card
  19. Was there a Pi Day on 3/14/1592?
  20. Welch’s formula

Twenty most viewed series:

  1. 2048 and algebra
  2. Another poorly written word problem
  3. Area of a triangle and volume of common shapes
  4. Arithmetic and geometric series
  5. Calculators and complex numbers
  6. Common Core, subtraction, and the open number line
  7. Computing e to any power
  8. Different definitions of e
  9. Exponential growth and decay
  10. Fun lecture on geometric series
  11. Inverse Functions
  12. Langley’s Adventitious Angles
  13. My Mathematical Magic Show
  14. Predicate Logic and Popular Culture
  15. Reminding students about Taylor series
  16. Slightly incorrect ugly mathematical Christmas T-shirts
  17. Square roots and logarithms without a calculator
  18. Wason selection task
  19. What I learned from reading “Gamma: Exploring Euler’s Constant” by Julian Havil
  20. Why does x^0 = 1 and x^-n = 1/x^n?

Twenty most viewed posts (guest presenters):

  1. Engaging students: Classifying polygons
  2. Engaging students: Congruence
  3. Engaging students: Distinguishing between axioms, postulates, theorems, and corollaries
  4. Engaging students: Distinguishing between inductive and deductive reasoning
  5. Engaging students: Equation of a circle
  6. Engaging students: Factoring quadratic polynomials
  7. Engaging students: Finding the domain and range of a function
  8. Engaging students: Finding x- and y-intercepts
  9. Engaging students: Inverse Functions
  10. Engaging students: Laws of Exponents
  11. Engaging students: Pascal’s triangle
  12. Engaging students: Solving linear systems of equations by either substitution or graphing
  13. Engaging students: Solving linear systems of equations with matrices
  14. Engaging students: Solving one-step and two-step inequalities
  15. Engaging students: Solving quadratic equations
  16. Engaging students: Square roots
  17. Engaging students: Translation, rotation, and reflection of figures
  18. Engaging students: Using a truth table
  19. Engaging students: Using right-triangle trigonometry
  20. Engaging students: Verifying trigonometric identities

green line

If I’m still here at that time, I’ll make a summary post like this again when this blog has over 500,000 page views.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.