Engaging students: Defining the terms complementary angles, supplementary angles, and vertical angles

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Michael Garcia. His topic, from Geometry: defining the terms complementary angles, supplementary angles, and vertical angles.

green line

What interesting (i.e., uncontrived) word problems using this topic can your students do now?

Using complementary, supplementary, and vertical angles, students can do simple angle problems. For example, give them a picture of a slice of pizza (or actual pizza if you’re truly nice). You can then make up questions regarding the pizza. For example, “Sally and John are going to split half a pizza. After they cut the pizza in two, John goes to wash his hands. Meanwhile, Sally slices herself a pretty generous slice. In fact, her pizza was cut at an angle of 130˚. After John realized he was bamboozled, he sadly settled for his piece. What was the angle of John’s one pizza slice?”

When you are working with a pizza, you can modify the scenario/question to fit complementary and vertical angles as well. For this question, the students could draw on a separate pizza pie the 130˚ by using a protractor. They will hopefully see that these are supplementary angles and subtract 130˚ from 180˚.

green line

What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

If your name is in the title of a subject, activity, or anything else, you more than likely had a tremendous impact on that thing. Euclid of Alexandria was a mathematician who is sometimes known as the “father of Geometry.” Not much information is known about Euclid, but his book Elements stands as the foundation of Euclidean Geometry. It is comprised of 13 books based off the work of his predecessors, but that is not to diminish Euclid’s work. He redefined geometry, introduced new concepts such as the Fundamental Theorem of Arithmetic, the intersection of planes and lines in three-dimensional figure, and more. In Book 1 Proposition 13, we see the concept of supplementary and complementary angles. In Book 1 Proposition 15, vertical angles are introduced in this section. Euclid was definitely one of the shoulders of giants upon who Newton, Kepler, and Descartes stood on.

green line

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

When I took Geometry in high school, I was a huge WWE fan. I thought Shawn Michaels “The Heartbreak Kid” was the best wrestler on the planet. For his finisher move, he would kick his opponent in the chin (it was very effective), and it was appropriately named “Sweet Chin Music.” As I grew older, I began to see how Geometry can fit into wrestling.

Below is an image of The Undertaker vs. Shawn Michaels at WrestleMania XXVI. As you look at the dimensions of the ring, notice that there are 4 right angles. If you were to take the consecutive angles of this ring, you would have a pair of angles that are supplementary.

We also have complementary angles. At the beginning of the match, each actor (I mean wrestler) goes to their corner. When the bell rings, they obviously start wrestling. In this match, The Undertaker sprints out of his corner towards Shawn Michaels (see image below). If we were to take his direction and put a ray on top of it, we know have complementary angles. Thanks to the dimension of the ring, we can model supplementary and complementary angles.

Resources:

https://www.youtube.com/watch?v=QaE58Kp806U&t=427s

http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf

https://www.britannica.com/biography/Euclid-Greek-mathematician

http://www.storyofmathematics.com/hellenistic_euclid.html

 

 

 

 

 

 

 

Previous Post
Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: