Confirming Einstein’s Theory of General Relativity With Calculus, Part 6d: Rationale for Method of Undetermined Coefficeints I

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \delta \left( \frac{1 + \epsilon \cos \theta}{\alpha} \right)^2,

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

We now take the perspective of a student who is taking a first-semester course in differential equations. There are two standard techniques for solving a second-order non-homogeneous differential equations with constant coefficients. One of these is the method of constant coefficients. To use this technique, we first expand the right-hand side of the differential equation and then apply a power-reduction trigonometric identity:

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{2\delta  \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos^2 \theta}{\alpha^2}

= \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2}{\alpha^2} \frac{1 + \cos 2\theta}{2}

= \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

This is now in the form for using the method of undetermined coefficients. However, in this series, I’d like to take some time to explain why this technique actually works. To begin, we look at a simplified differential equation using only the first three terms on the right-hand side:

u''(\theta) + u(\theta) = \displaystyle\frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}  .

Let v(\theta) =\displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}  . Since v is a constant, this function satisfies the simple differential equation v' = 0. Since u''+u=v, we can substitute:

(u'' + u)' = 0

u''' + u' = 0

(We could have more easily said, “Take the derivative of both sides,” but we’ll be using a more complicated form of this technique in future posts.) The characteristic equation of this differential equation is r^3 + r = 0. Factoring, we obtain r(r^2 + 1) = 0, so that the three roots are r = 0 and r = \pm i. Therefore, the general solution of this differential equation is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + c_3.

Notice that this matches the outcome of blindly using the method of undetermined coefficients without conceptually understanding why this technique works.

The constants c_1 and c_2 are determined by the initial conditions. To find c_3, we observe

u''(\theta) +u(\theta) =  -c_1 \cos \theta - c_2 \sin \theta +c_1 \cos \theta + c_2 \sin \theta + c_3

\displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}  = c_3.

Therefore, the general solution of this simplified differential equation is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}.

Furthermore, setting c_1 = c_2 = 0, we see that

u(\theta) = \displaystyle\frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}

is a particular solution to the differential equation

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} .

In the next couple of posts, we find the particular solutions associated with the other terms on the right-hand side.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.