In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Conner Dunn. His topic, from Algebra: solving absolute value equations.

**How could you as a teacher create an activity or project that involves your topic?**

This topic is an excellent concept for algebra students wanting real life applications when learning math concepts. In creating an activity relevant to this, the “real life” concept I’d want to emphasize is distance, which conveniently is in the definition of absolute value. Distance can be expressed in words or in pictures, and specifically with absolute value, we model distance as a one-dimensional (one variable) function. To express a model like this, I’d want get students to know what the numbers and operations can mean for a distance problem. For example, a student should be able to know that |x-7| = 3 can be expressed as “the distance between x and 7 is 3.” The potential activity here is to get students to either express absolute-value equations in words or vice versus. The same concept of distance can be played out in pictural or graphical representations. Obviously, I can use absolute value graphs to model this, but I would specifically look at one-dimensional representation and maybe have students try and model a situation using absolute value equations. It’ll be in these activities that I could really nail down true meanings of 2-solution, 1 solution, or no solution problems and why, for example, they have to check for extraneous solutions when solving.

**How can this topic be used in your students’ future courses in mathematics or science?**

The concept of solving this type of equation is really relevant and similar to that of solving for quadratic equations as well as polynomial equations in general. When students are able to grasp the concept of having 0, 1, or 2 solutions in an absolute value equation and know why, they’ll be using this understanding when solving for polynomials of high degrees. I’d also like to imagine students might want to make the connection to midpoints in Geometry. Absolute value equations can tell the 1-dimensional distance from a point to another two points in either direction. When Geometry students see this modelled on a number line, they may be able to identify 3 points equidistant from one another forming 2 congruent segments.

**How does this topic extend what your students should have learned in previous courses?**

The things I would teach about solving absolute value equations really build off students’ understanding of equivalence and the properties about it that they use when asked to “solve” for anything an algebra class. One of the big steps in solving a|bx+c| + d = e is described as “solving for the absolute value.” This step builds off students’ previous works of “solving for x.” The solution for connecting these is clear: just let the “x” or rather the variable to solve for be the absolute value, and then solve for it using those equivalence properties they know. The great thing about this is that it builds on the idea that when solving for unknown variables, it’s okay to not immediately know them. Equiveillance properties are tools that students can use to work towards solving for unknowns. The more accustomed students are to these tools, the better, so when throwing in absolute values into the mix, it makes for good practice in using “equivalence tools.”