Why does 0! = 1? (Part 1)

This common question arises because 0! does not fit the usual definition for n!. Recall that, for positive integers, we have

5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120

4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24

3! = 3 \cdot 2 \cdot 1 = 6

2! = 2 \cdot 1 = 2

1! = 1

Going from the bottom line to the top, we see that start at 1, and then multiply by 2, then multiply by 3, then multiply by 4, then multiply by 5. To get 6!, we multiply the top line by 6:

6! = 6 \cdot 5! = 6 \cdot 120 = 720.

Because they’re formed by successive multiplications, the factorials get large very, very quickly. I still remember, years ago, writing lesson plans while listening to the game show Wheel of Fortune. After the contestant solved the final puzzle, Pat Sajak happily announced, “You’ve just won $40,320 in cash and prizes.” My instantaneous reaction: “Ah… that’s 8!.” Then I planted a firm facepalm for having factorials as my first reaction. (Perhaps not surprisingly, I was still single when this happened.)

Back to 0!. We can also work downward as well as upward through successive division. In other words,

5! divided by 5 is equal to 4!.

4! divided by 4 is equal to 3!.

3! divided by 3 is equal to 2!.

2! divided by 2 is equal to 1!.

Clearly, there’s one more possible step: dividing by 1. And so we define 0! to be equal to 1! divided by 1, or

0! = \displaystyle \frac{1!}{1} = 1.

Notice that there’s a natural way to take another step because division by 0 is not permissible. So we can define 0!, but we can’t define (-1)!, (-2)!, \dots.

In Part 2, I’ll present a second way of approaching this question.

Leave a comment

1 Comment

  1. Why does 0! = 1? (Index) | Mean Green Math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: