Square roots and logarithms without a calculator (Part 6)

I’m in the middle of a series of posts concerning the elementary operation of computing a square root. This is such an elementary operation because nearly every calculator has a \sqrt{~~} button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find square roots. I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders.

In Parts 3-5 of this series, I discussed how log tables were used in previous generations to compute logarithms and antilogarithms.

Today’s topic — log tables — not only applies to square roots but also multiplication, division, and raising numbers to any exponent (not just to the 1/2 power). After showing how log tables were used in the past, I’ll conclude with some thoughts about its effectiveness for teaching students logarithms for the first time.

To begin, let’s again go back to a time before the advent of pocket calculators… say, the 1880s.

Aside from a love of the movies of both Jimmy Stewart and John Wayne, I chose the 1880s on purpose. By the end of that decade, James Buchanan Eads had built a bridge over the Mississippi River and had designed a jetty system that allowed year-round navigation on the Mississippi River. Construction had begun on the Panama Canal. In New York, the Brooklyn Bridge (then the longest suspension bridge in the world) was open for business. And the newly dedicated Statue of Liberty was welcoming American immigrants to Ellis Island.

And these feats of engineering were accomplished without the use of pocket calculators.

Here’s a perfectly respectable way that someone in the 1880s could have computed \sqrt{4213} to reasonably high precision. Let’s write

x = \sqrt{4213}.

Take the base-10 logarithm of both sides.

\log_{10} x = \log_{10} \sqrt{4213} = \log_{10} (4213)^{1/2} = \displaystyle \frac{1}{2} \log_{10} 4213.

Then log tables can be used to compute \log_{10} 4213.

logtables1 logtables2

Step 1. In our case, we’re trying to find \log_{10} 4213. We know that \log_{10} 1000 = 3 and \log_{10} 10,000 = 4, so the answer must be between 3 and 4. More precisely,

\log_{10} 4213 = \log_{10} (1000 \times 4.213) = \log_{10} 1000 + \log_{10} 4.213 = 3 + \log_{10} 4.213.

To find \log_{10} 4.213, we see from the table that

\log_{10} 4.21 \approx 0.6243 and \log_{10} 4.22 = 0.6253

So, to estimate \log_{10} 4.213, we will employ linear interpolation. That’s a fancy way of saying “Find the line connecting (4.21,0.6243) and (4.22,0.6253), and find the point on the line whose x-coordinate is 4.213. Finding this line is a straightforward exercise in the point-slope form of a line:

m = \displaystyle \frac{0.6253-0.6243}{4.22-4.21} = 0.1

y - 0.6243 = 0.1 (x - 4.21)

y = 0.6243 + 0.1 (4.213-4.21)

y = 0.6243 + 0.1(0.003) = 0.6246

So we estimate \log_{10} 4.213 \approx 0.6246. Thus, so far in the calculation, we have

\log_{10} \sqrt{4213} \approx \displaystyle \frac{1}{2} (3 + 0.6246) = 1.8123

Step 2. We then take the antilogarithm of both sides. The term antilogarithm isn’t used much anymore, but the principle is still taught in schools: take 10 to the power of both the left- and right-hand sides. We obtain

\sqrt{4213} \approx 10^{1.8123} = 10^{1 + 0.8123} = 10^1 \times 10^{0.8123}

The first part of the right-hand side is easy: 10^1 = 10. For the second-part, we use the log table again, but in reverse. We try to find the numbers that are closest to 0.8123 in the body of the table. In our case, we find that

\log_{10} 6.49 = 0.8122 and \log_{10} 6.50 = 0.8129.

Once again, we use linear interpolation to find the line connecting (6.49,0.8122) and (6.50,0.8129), except this time the y-coordinate of 0.8123 is known and the x-coordinate is unknown.

m = \displaystyle \frac{0.8129-0.8122}{6.50-6.49} = 0.07

y - 0.8122 = 0.07 (x - 6.49)

0.8123 - 0.8122 = 0.07 (x - 6.49)

x = 6.49 + \displaystyle \frac{0.0001}{0.07} = 6.4914\dots

Since the table is only accurate to four significant digits, we estimate that 10^{0.8123} \approx 6.491. Therefore,

\sqrt{4213} \approx 10^1 \times 10^{0.8123} = 10 \times 6.491 = 64.91

By way of comparison, the answer is \sqrt{4213} \approx 64.9076\dots \approx 64.91, rounding at the hundredths digit. Not bad, for a generation born before the advent of calculators.

With a little practice, one can do the above calculations with relative ease. Also, many log tables of the past had a column called “proportional parts” that essentially replaced the step of linear interpolation, thus speeding the use of the table considerably.

green line

Log tables can be used for calculations more complex than finding a square root. For example, suppose I need to calculate

x = \displaystyle \frac{(34.5)^3}{(912)^{2/5}}

Using the log table, and without using a calculator, I find that

\log_{10} x = 3 \log_{10} 34.5 - \displaystyle \frac{2}{5} \log_{10} 912

\log_{10} x = 3(1.5378) - \displaystyle \frac{2}{5} (2.9600)

\log_{10} x = 3.4294

x = 10^3 \cdot 10^{0.4294} = 1000 \cdot 2.688 = 2688

That’s the correct answer to four significant digits. Using a calculator, we find the answer is 2688.186\dots

Square roots and logarithms without a calculator (Part 5)

I’m in the middle of a series of posts concerning the elementary operation of computing a square root. This is such an elementary operation because nearly every calculator has a \sqrt{~~} button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find square roots. I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders.

One way that square roots can be computed without a calculator is by using log tables. This was a common computational device before pocket scientific calculators were commonly affordable… say, the 1920s.

As many readers may be unfamiliar with this blast from the past, Parts 3 and 4 of this series discussed the mechanics of how to use a log table. In Part 6, I’ll discuss how square roots (and other operations) can be computed with using log tables.

In this post, I consider the modern pedagogical usefulness of log tables, even if logarithms can be computed more easily with scientific calculators.

green line

A personal story: In either 1981 or 1982, my parents bought me my first scientific calculator. It was a thing of beauty… maybe about 25% larger than today’s TI-83s, with an LED screen that tilted upward. When it calculated something like \log_{10} 4213, the screen would go blank for a couple of seconds as it struggled to calculate the answer. I’m surprised that smoke didn’t come out of both sides as it struggled. It must have cost my parents a small fortune, maybe over $1000 after adjusting for inflation. Naturally, being an irresponsible kid in the early 1980s, it didn’t last but a couple of years. (It’s a wonder that my parents didn’t kill me when I broke it.)

So I imagine that requiring all students to use log tables fell out of favor at some point during the 1980s, as technology improved and the prices of scientific calculators became more reasonable.

I regularly teach the use of log tables to senior math majors who aspire to become secondary math teachers. These students who have taken three semesters of calculus, linear algebra, and several courses emphasizing rigorous theorem proving. In other words, they’re no dummies. But when I show this blast from the past to them, they often find the use of a log table to be absolutely mystifying, even though it relies on principles — the laws of logarithms and the point-slope form of a line — that they think they’ve mastered.

So why do really smart students, who after all are math majors about to graduate from college, struggle with mastering log tables, a concept that was expected of 15- and 16-year-olds a generation ago? I personally think that a lot of their struggles come from the fact that they don’t really know logarithms in the way that students of previous generation had to know them in order to survive precalculus. For today’s students, a logarithm is computed so easily that, when my math majors were in high school, they were not expected to really think about its meaning.

For example, it’s no longer automatic for today’s math majors to realize that \log_{10} 4213 has to be between 3 and 4 someplace. They’ll just punch the numbers in the calculators to get an answer, and the process happens so quickly that the answer loses its meaning.

They know by heart that \log_{b} xy = \log_{b} x + \log_{b} y and that \log_b b^x = x. But it doesn’t reflexively occur to them that these laws can be used to rewrite \log_{10} 4213 as 3 + \log_{10} 4.213.

When encountering 10^{1.8123}, their first thought is to plug into a calculator to get the answer, not to reflect and realize that the answer, whatever it is, has to be between 10 and 100 someplace.

Today’s math majors can be taught these approximation principles, of course, but there’s unfortunately no reason to expect that they received the same training with logarithms that students received a generation ago. So none of this discussion should be considered as criticism of today’s math majors; it’s merely an observation about the training that they received as younger students versus the training that previous generations received.

green line

So, do I think that all students today should exclusively learn how to use log tables? Absolutely not.If college students who have received excellent mathematical training can be daunted by log tables, you can imagine how the high school students of generations past must have felt — especially the high school students who were not particularly predisposed to math in the first place.

People like me that made it through the math education system of the 1980s (and before) received great insight into the meaning of logarithms. However, a lot of students back then found these tables as mystifying as today’s college students, and perhaps they did not survive the system because they found the use of the table to be exceedingly complex. In other words, while they were necessary for an era that pre-dated pocket calculators, log tables (and trig tables) were an unfortunate conceptual roadblock to a lot of students who might have had a chance at majoring in a STEM field. By contrast, logarithms are found easily today so that the steps above are not a hindrance to today’s students.

That said, I do argue that there is pedagogical value (as well as historical value) in showing students how to use log tables, even though calculators can accomplish this task much quicker. In other words, I wouldn’t expect students to master the art of performing the above steps to compute logarithms on the homework assignments and exams. But if they can’t perform the above steps, then there’s room for their knowledge of logarithms to grow.

And it will hopefully give today’s students a little more respect for their elders.

Square roots and logarithms without a calculator (Part 4)

I’m in the middle of a series of posts concerning the elementary operation of computing a square root. In Part 3 of this series, I discussed how previous generations computed logarithms without a calculator by using log tables. In this post, I’ll discuss how previous generations computed, using the language of the time, antilogarithms. In Part 5, I’ll discuss my opinions about the pedagogical usefulness of log tables, even if logarithms can be computed more easily with scientific calculators. And in Part 6, I’ll return to square roots — specifically, how log tables can be used to find square roots.

Let’s again go back to a time before the advent of pocket calculators… say, 1943.

The following log tables come from one of my prized possessions: College Mathematics, by Kaj L. Nielsen (Barnes & Noble, New York, 1958).

logtables1 logtables2

How to use the table, Part 5. The table can also be used to work backwards and find an antilogarithm. The term antilogarithm isn’t used much anymore, but the principle is still used in teaching students today. Suppose we wish to solve

\log_{10} x = 0.9509, or x = 10^{0.9509}.

Looking through the body of the table, we see that 9509 appears on the row marked 89 and the column marked 3. Therefore, $10^{0.9509} \approx 8.93$. Again, this matches (to three and almost four significant digits) the result of a modern calculator.

TIlog2

How to use the table, Part 6. Linear interpolation can also be used to find antilogarithms. Suppose we’re trying to evaluate 10^{0.9387},  or find the value of x so that $\log_{10} x = 0.9387$. From the table, we can trap 9387 between

\log_{10} 8.68 \approx 0.9385 and \log_{10} 8.69 \approx 0.9390

So we again use linear interpolation, except this time the value of y is known and the value of x is unknown:

m = \displaystyle \frac{0.9390-0.9385}{8.69-8.68} = 0.05

y - 0.9385= 0.05 (x - 8.68)

0.9387 - 0.9385= 0.05 (x - 8.68)

0.0002 = 0.05 (x-8.68)

0.004 =x-8.68

8.684 =x

So we estimate 10^{0.9387} \approx 8.684 This matches the result of a modern calculator to four significant digits:

TIlog4

How to use the table, Part 7.

How to use the table, Part 8.

Note: Sorry, but I’m not sure what happened… when the post came up this morning (August 4), I saw my work in Parts 7 and 8 had disappeared. Maybe one of these days I’ll restore this.

Square roots and logarithms without a calculator (Part 3)

I’m in the middle of a series of posts concerning the elementary operation of computing a square root. This is such an elementary operation because nearly every calculator has a \sqrt{~~} button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find square roots. I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders.

Today’s topic is the use of log tables. I’m guessing that many readers have either forgotten how to use a log table or else were never even taught how to use them. After showing how log tables were used in the past, I’ll conclude with some thoughts about its effectiveness for teaching students logarithms for the first time.

This will be a fairly long post about log tables. In the next post, I’ll discuss how log tables can be used to compute square roots.

To begin, let’s again go back to a time before the advent of pocket calculators… say, 1912.

Before the advent of pocket calculators, most professional scientists and engineers had mathematical tables for keeping the values of logarithms, trigonometric functions, and the like. The following images come from one of my prized possessions: College Mathematics, by Kaj L. Nielsen (Barnes & Noble, New York, 1958). Some saint gave this book to me as a child in the late 1970s; trust me, it was well-worn by the time I actually got to college.

With the advent of cheap pocket calculators, mathematical tables are a relic of the past. The only place that any kind of mathematical table common appears in modern use are in statistics textbooks for providing areas and critical values of the normal distribution, the Student t distribution, and the like.

That said, mathematical tables are not a relic of the remote past. When I was learning logarithms and trigonometric functions at school in the early 1980s — one generation ago — I distinctly remember that my school textbook had these tables in the back of the book.

And it’s my firm opinion that, as an exercise in history, log tables can still be used today to deepen students’ facility with logarithms. In this post and Part 4 of this series, I discuss how the log table can be used to compute logarithms and (using the language of past generations) antilogarithms without a calculator. In Part 5, I’ll discuss my opinions about the pedagogical usefulness of log tables, even if logarithms can be computed more easily nowadays with scientific calculators. In Part 6, I’ll return to square roots — specifically, how log tables can be used to find square roots.

logtables1 logtables2

How to use the table, Part 1. How do you read this table? The left-most column shows the ones digit and the tenths digit, while the top row shows the hundredths digit. So, for example, the bottom row shows ten different base-10 logarithms:

\log_{10} 9.90 \approx 0.9956, \log_{10} 9.91 \approx 0.9961, \log_{10} 9.92 \approx 0.9965,

\log_{10} 9.93 \approx 0.9969, \log_{10} 9.94 \approx 0.9974, \log_{10} 9.95 \approx 0.9978,

\log_{10} 9.96 \approx 0.9983, \log_{10} 9.97 \approx 0.9987, \log_{10} 9.98 \approx 0.9991,

\log_{10} 9.99 \approx 0.9996

So, rather than punching numbers into a calculator, the table was used to find these logarithms. You’ll notice that these values match, to four decimal places, the values found on a modern calculator.

TIlog

How to use the table, Part 2. What if we’re trying to take the logarithm of a number between 1 and 10 which has more than two digits after the decimal point, like \log_{10} 5.1264? From the table, we know that the value has to lie between

\log_{10} 5.12 \approx 0.7093 and \log_{10} 5.13 \approx 0.7101

So, to estimate \log_{10} 5.1264, we will employ linear interpolation. That’s a fancy way of saying “Find the line connecting (5.12,0.7093) and (5.13,0.7101), and find the point on the line whose x-coordinate is 5.1264. The graph of $y = \log_{10} x$ is not a straight line, of course, but hopefully this linear interpolation will be reasonably close to the correct answer.

Finding this line is a straightforward exercise in the point-slope form of a line:

m = \displaystyle \frac{0.7101-0.7093}{5.13-5.12} = 0.08

y - 0.7093= 0.08 (x - 5.12)

y = 0.7093+ 0.08 (5.1264-5.12)

y = 0.7093+ 0.08(0.0064) = 0.7093 + 0.000512 = 0.709812

Remembering that this log table is only good to four significant digits, we estimate \log_{10} 5.1264 \approx 0.7098.

With a little practice, one can do the above calculations with relative ease. Also, many log tables of the past had a column called “proportional parts” that essentially replaced the step of linear interpolation, thus speeding the use of the table considerably.

Again, this matches the result of a modern calculator to four decimal places:

TIlog3

How to use the table, Part 3. So far, we’ve discussed taking the logarithms of numbers between 1 and 10 and the antilogarithms of numbers between 0 and 1. Let’s now consider what happens if we pick a number outside of these intervals.

To find \log_{10} 12,345, we observe that

\log_{10}12345 = \log_{10} (10,000 \times 1.2345)

\log_{10} 12345 = \log_{10} 10,000 + \log_{10} 1.2345

\log_{10} 12345 = 4 + \log_{10} 1.2345

More intuitively, we know that the answer must lie between \log_{10} 10,000 = 4 and 100,000 = 5, so the answer must be 4.\hbox{something}. The value of \log_{10} 1.2345 is the necessary \hbox{something}.

We then find \log_{10} 1.2345 by linear interpolation. From the table, we see that

\log_{10} 1.23 \approx 0.0899 and \log_{10} 1.24 \approx 0.0934

Employing linear interpolation, we find

m = \displaystyle \frac{0.0934-0.0899}{1.24-1.23} = 0.35

y - 0.0899= 0.35 (x - 1.23)

y = 0.0899+ 0.35 (1.2345-1.23)

y = 0.0899+ 0.35(0.0045) = 0.0899 + 0.001575 = 0.091475

Remembering that this log table is only good to four significant digits, we estimate \log_{10} 1.2345 \approx 0.0915, so that \log_{10} 12,345 \approx 4.0915.

Again, this matches the result of a modern calculator to four decimal places (in this case, five significant digits):

TIlog5

How to use the table, Part 4.  Let’s now consider what happens if we pick a positive number less than 1. To find \log_{10} 0.00012345, we observe that

\log_{10}0.00012345 = \log_{10} \left( 1.2345 \times 10^{-4} \right)

\log_{10}0.00012345 = \log_{10} 1.2345 + \log_{10} 10^{-4}

\log_{10} 0.00012345 = -4 + \log_{10} 1.2345

We have already found \log_{10} 1.2345 \approx 0.0915 by linear interpolation. We therefore conclude that \log_{10} 12,345 \approx 0.0915 - 4 = -3.9085. Again, this matches the result of a modern calculator to four decimal places (in this case, five significant digits):

TIlog6

green line

So that’s how to compute logarithms without a calculator: we rely on somebody else’s hard work to compute these logarithms (which were found in the back of every precalculus textbook a generation ago), and we make clever use of the laws of logarithms and linear interpolation.

Log tables are of course subject to roundoff errors. (For that matter, so are pocket calculators, but the roundoff happens so deep in the decimal expansion — the 12th or 13th digit — that students hardly ever notice the roundoff error and thus can develop the unfortunate habit of thinking that the result of a calculator is always exactly correct.)

For a two-page table found in a student’s textbook, the results were typically accurate to four significant digits. Professional engineers and scientists, however, needed more accuracy than that, and so they had entire books of tables. A table showing 5 places of accuracy would require about 20 printed pages, while a table showing 6 places of accuracy requires about 200 printed pages. Indeed, if you go to the old and dusty books of any decent university library, you should be able to find these old books of mathematical tables.

In other words, that’s how the Brooklyn Bridge got built in an era before pocket calculators.

At this point you may be asking, “OK, I don’t need to use a calculator to use a log table. But let’s back up a step. How were the values in the log table computed without a calculator?” That’s a perfectly reasonable question, but this post is getting long enough as it is. Perhaps I’ll address this issue in a future post.

Square roots and logarithms without a calculator (Part 2)

I’m in the middle of a series of posts concerning the elementary operation of computing a square root. This is such an elementary operation because nearly every calculator has a \sqrt{~~} button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find square roots.

I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders. Indeed, when I show this method to today’s college students, they are absolutely mystified that a square root can be extracted by hand, without the aid of a calculator.

To begin, let’s again go back to a time before the advent of pocket calculators… say, ancient Rome. (I personally love using Back to the Future for the pedagogical purpose of simulating time travel, but I already used that in the previous post.)

How did previous generations figure out \sqrt{4213} without a calculator? In the previous post, I introduced a trapping method that directly used the definition of \sqrt{~~} for obtaining one digit at a time. Here’s a second trapping method that’s significantly more efficient. As we’ll see, this second method works because of base-10 arithmetic and a very clever use of Algebra I. My understanding is that this procedure was a standard topic in the mathematical training of children as little as 50 years ago.

Personally, I was taught this method when I was maybe 10 or 11 years old by my math teacher; I don’t doubt that she had to learn to extract square roots by hand when she was a student. Of course, this trapping method fell out of pedagogical favor with the advent of cheap pocket calculators.

I’ll illustrate this method again with \sqrt{4213}. After illustrating the method, I’ll discuss how it works using Algebra I.

green line

1. To begin, we start from the decimal point and group digits in block of two. (If the number had been 413, then the 4 would have been in a group by itself.) I start with the 42. What perfect square is closest to 42 without going over? Clearly, the answer is 6. So, mimicking the algorithm for long division:

  • We’ll place a 6 over the 42, signifying that the answer is in the 60s.
  • We’ll subtract 36 from 42, for an answer of 6.

sqrt12. On the next step, we’ll do a couple of things that are different from ordinary long division:

  • We’ll bring down the next two digits. So we’ll work with 613.
  • We’ll double the number currently on top and place the result to the side. In our case $6 \times 2 = 12$.
  • We’ll place a small ___ after the 12 and under the 12.
  • The basic question is: I need 120something times the same something to be as close to 613 as possible without going over. I like calling this The Price Is Right problem, since so many games on that game show involve guessing a price without going over the actual price. For example…

121 \times 1 = 121: too small

122 \times 2 = 244: too small

123 \times 3 = 369: too small

124 \times 4 = 496: too small

125 \times 5 = 625: too big

  • Based on the above work, the next digit is 4. We place the 4 over the next block of digits and subtract 124 \times 4 = 496 from 613. So we will work with 613-496 = 117 on the next step.

sqrt23. On the next step, we’ll do a couple of things that are different from ordinary long division:

  • We’ll bring down the next two digits. On this step, the next two digits are the first two zeroes after the decimal point. So we’ll work with 11,700.
  • We’ll double the number currently on top and place the result to the side. In our case $64 \times 2 = 128$.
  • We’ll place a small ___ after the 128 and under the 128.
  • The basic question is: I need 1280something times the same something to be as close to 11,700 as possible without going over. For example…

1281 \times 1 = 1281: too small

1282 \times 2 = 2564: too small

1283 \times 3 = 3849: too small

1284 \times 4 = 5136: too small

1285 \times 5 = 6425: too small

1286 \times 6 = 7716: too small

1287 \times 7 = 9009: too small

1288 \times 8 = 10,304: too small

1289 \times 9 = 11,601: still too small

  • Based on the above work, the next digit is 9. We place the 9 over the next block of digits and subtract 1289 \times 9 = 11,601 from 11,700. So we will work with 11,700-11,601 = 99 on the next step.

Then, to quote The King and I, et cetera, et cetera, et cetera. Each step extracts an extra digit of the square root. With a little practice, one gets better at guessing the correct value of x.

A personal story: when I was a teenager and too cheap to buy a magazine, I would extract square roots to kill time while waiting in the airport for a flight to start boarding. My parents hated missing flights, so I was always at the gate with plenty of time to spare… and I could extract about 20 digits of \sqrt{2} while waiting for the boarding announcement.

So why does this algorithm work? I offer a thought bubble if you’d like to think about before I give the answer.

P.S. In case anyone complains, the people of ancient Rome could not have performed this algorithm since they used Roman numerals and not a base 10 decimal system.

green_speech_bubble

To see why this works, let’s consider the first two steps of finding \sqrt{4213}. Clearly, the answer lies between 60 and 70 somewhere (that was Step 1). So the basic problem is to solve for x if

(60+x)^2 = 4213,

where x is the excess amount over 60. Squaring, we obtain

3600 + 120x + x^2 = 4213,

or

120x + x^2 = 613,

or

(120+x)x = 613

Notice that the right-hand side is 4213-3600, which was obtained at the start of Step 2. The left-hand side has the form 120something times the same something, which was the key part of completing Step 2. So the value of x that gets (120+x)x as close to 613 as possible (without going over) will be the next digit in the decimal representation of \sqrt{4213}.

The logic for the remaining digits is similar.

green line

I should mention that third roots, fourth roots, etc. can (in principle) be found using algebra to find excess amounts. However, it’s quite a bit more work for these higher roots. For example, to find the cube root of 4213, we immediately see that 10^3 = 1000 < 4213 < 8000 = 20^3, so that the answer lies between 10 and 20. To find the excess amount over 10, we need to solve

(10+x)^3 = 4213,

which reduces to

(300 + 30x + x^2)x = 3213.

So we then try out values of x so that the left-hand side gets as close to 3213 as possible without going over.

In closing, in honor of this method, here’s a great compilation of clips from The Price Is Right when the contestant guessed a price that was quite close to the actual price without going over.

http://www.youtube.com/watch?v=IHWOMyYT0jM

Square roots and logarithms without a calculator (Part 1)

This post begins a series of posts concerning the elementary operation of computing a square root. This is such an elementary operation because nearly every calculator has a \sqrt{~~} button, and so students today are accustomed to quickly getting an answer without giving much thought to (1) what the answer means or (2) what magic the calculator uses to find square roots.

I like to show my future secondary teachers a brief history on this topic… partially to deepen their knowledge about what they likely think is a simple concept, but also to give them a little appreciation for their elders.

To begin, let’s go back to a time before the advent of pocket calculators… say, 1955. (When actually teaching this in class, I find the movie clip to be a great and brief way to get students into the mindset of going back in time.)

How did people in 1955 figure out \sqrt{4213}? After all, plenty of marvelous feats of engineering were made before the advent of calculators. So was this computed back then?

green lineOne rudimentary method is simply by trapping the solution. In other words, let’s try guessing the answer to x^2 = 4213 and see if we get it right.

1. First, the tens digit.

  • 60^2 = 3600. Too small.
  • 70^2 = 4900. Too big.
  • Since 3600 < 4213 < 4900, the answer has to be somewhere between 60 and 70.

2. Next, the ones digit. Since 4213 is about halfway between 3600 and 4900, let’s start by guessing 65.

  • 65^2 = 4225. Too big, but not much too big. So let’s try 64 next, as opposed to 62 or 63.
  • 64^2 = 4096. Too small.
  • So the answer has to be somewhere between 64 and 65.

3. Next, the tenth digit. Since 4213 is so close to 4225, let’s start closer to 65 than to 64.

  • 64.8^2 = 4199.04
  • 64.9^2 = 4212.01
  • We already know that 65.0^2 = 4225
  • So the answer has to be somewhere between 64.9 and 65.

And we keep repeating this procedure, obtaining one digit at a time. (My next guess, for the hundredths digit, would be 64.91 or 64.92.) Back in 1955, all of the above squaring was done by hand, without a calculator. With enough patience, \sqrt{4213} can be obtained to as many digits as required.

I distinctly remember using this procedure, just for the fun of it, when I was 7 or 8 years old (with the help of calculator, however). This exercise was far more cumbersome that simply hitting the \sqrt{~~} button, but it really developed my number sense as a young child, not to mention internalizing the true meaning of what a square root actually was. Little insights like “let’s start closer to 65 than to 64 just don’t come naturally without this kind of trial-and-error practice.

For what it’s worth, the above procedure is the essence of the binary search algorithm (from computer science) or the method of successive bisections (from numerical analysis), with a little human intuition thrown in for good measure.