Sum of Three Cubes

I now have a new example of an existence proof to show my students.

Last year, mathematicians Andrew Booker and Andrew Sutherland found solutions to the following two equations: x^3 + y^3 + z^3 = 33 and x^3 + y^3 + z^3 = 42. The first was found by Booker alone; the latter was found by the collaboration of both mathematicians. These deceptively simple-looking equations were cracked with a lot of math and a lot of computational firepower. The solutions:

(8,866,128,975,287,528)³ + (–8,778,405,442,862,239)³ + (–2,736,111,468,807,040)³ = 33

$latex (–80,538,738,812,075,974)3 + 80,435,758,145,817,5153 + 12,602,123,297,335,6313 = 42$

At the time of this writing, that settles the existence of solutions of x^3 + y^3 + z^3 = n for all positive integers n less than 100. For now, the smallest value of n for which the existence of a solution is not known is n = 114.

For further reference, including links to the original articles by Booker and then Booker and Sutherland, please see:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.