A Visual Proof of a Remarkable Trig Identity

Strange but true (try it on a calculator):

\displaystyle \cos \left( \frac{\pi}{9} \right) \cos \left( \frac{2\pi}{9} \right) \cos \left( \frac{4\pi}{9} \right) = \displaystyle \frac{1}{8}.

Richard Feynman learned this from a friend when he was young, and it stuck with him his whole life.

Recently, the American Mathematical Monthly published a visual proof of this identity using a regular 9-gon:

Feynman identity

Source: https://www.facebook.com/AmerMathMonthly/photos/a.250425975006394.53155.241224542593204/1045091252206525/?type=3&theater

This same argument would work for any 2^n+1-gon. For example, a regular pentagon can be used to show that

\displaystyle \cos \left( \frac{\pi}{5} \right)  \cos \left( \frac{2\pi}{5} \right) = \displaystyle \frac{1}{4},

and a regular 17-gon can be used to show that

\displaystyle \cos \left( \frac{\pi}{17} \right) \cos \left( \frac{2\pi}{17} \right) \cos \left( \frac{4\pi}{17} \right) \cos \left( \frac{8\pi}{17} \right) = \displaystyle \frac{1}{16}.

Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: