Proving theorems and special cases (Part 12): The sum and difference formulas for sine

In a recent class with my future secondary math teachers, we had a fascinating discussion concerning how a teacher should respond to the following question from a student:

Is it ever possible to prove a statement or theorem by proving a special case of the statement or theorem?

Usually, the answer is no. In this series of posts, we’ve seen that a conjecture could be true for the first 40 cases or even the first 10^{316} cases yet not always be true. We’ve also explored the computational evidence for various unsolved problems in mathematics, noting that even this very strong computational evidence, by itself, does not provide a proof for all possible cases.

However, there are plenty of examples in mathematics where it is possible to prove a theorem by first proving a special case of the theorem. For the remainder of this series, I’d like to list, in no particular order, some common theorems used in secondary mathematics which are typically proved by first proving a special case.

3. Theorem 1. \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha + \sin \beta

Theorem 2. \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

For angles that are not acute, these theorems can be proven using a unit circle and the following four lemmas:

Lemma 1. \cos(x - y) = \cos x \cos y + \sin x \sin y

Lemma 2. \cos(x + y) = \cos x \cos y - \sin x \sin y

Lemma 3. \sin(\pi/2 - x) = \cos x

Lemma 4. \cos(\pi/2 - x) = \sin x

Specifically, assuming Lemmas 1-4, then:

\sin(\alpha + \beta) = \cos(\pi/2 - [\alpha + \beta]) by Lemma 4

= \cos([\pi/2 - \alpha] - \beta)

= \cos(\pi/2 - \alpha) \cos \beta + \sin(\pi/2 - \alpha) \sin \beta by Lemma 1

= \sin \alpha \cos \beta + \cos \alpha \sin \beta by Lemmas 3 and 4.


\sin(\alpha - \beta) = \cos(\pi/2 - [\alpha - \beta]) by Lemma 4

= \cos([\pi/2 - \alpha] + \beta)

= \cos(\pi/2 - \alpha) \cos \beta - \sin(\pi/2 - \alpha) \sin \beta by Lemma 2

= \sin \alpha \cos \beta - \cos \alpha \sin \beta by Lemmas 3 and 4.

However, we see that what I’ve called Lemma 3, often called a cofunction identity, can be considered a special case of Theorem 2. However, this is not circular logic since the cofunction identities can be proven without appealing to Theorems 1 and 2.


Leave a comment

1 Comment

  1. Proving theorems and special cases: Index | Mean Green Math

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: