Inverse Functions: Arccosine and Dot Products (Part 23)

The Law of Cosines can be applied to find the angle between two vectors {\bf a} and {\bf b}. To begin, we draw the vectors {\bf a} and {\bf b}, as well as the vector {\bf c} (to be determined momentarily) that connects the tips of the vectors {\bf a} and {\bf b}.

dotproduct2Using the usual rules for adding vectors, we see that {\bf a} + {\bf c} = {\bf b}, so that {\bf c} = {\bf b} - {\bf a}

We now apply the Law of Cosines to find \theta:

\parallel \! \! {\bf c} \! \! \parallel^2 = \parallel \! \! {\bf a} \! \! \parallel^2 + \parallel \! \! {\bf b} \! \! \parallel^2 - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

\parallel \! \! {\bf b} - {\bf a} \! \! \parallel^2 = \parallel \! \! {\bf a} \! \! \parallel^2 + \parallel \! \! {\bf b} \! \! \parallel^2 - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

We now apply the rule \parallel \! \! {\bf a} \! \! \parallel^2 = {\bf a} \cdot {\bf a}, convert the square of the norms into dot products. We then use the distributive and commutative properties of dot products to simplify.

( {\bf b} - {\bf a} ) \cdot ({\bf b} - {\bf a}) = {\bf a} \cdot {\bf a} + {\bf b} \cdot {\bf b} - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

{\bf b} \cdot ({\bf b} - {\bf a}) - {\bf a} \cdot ({\bf b} - {\bf a}) = {\bf a} \cdot {\bf a} + {\bf b} \cdot {\bf b} - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

{\bf b} \cdot ({\bf b} - {\bf a}) -{\bf a} \cdot ({\bf b} - {\bf a}) = {\bf a} \cdot {\bf a} + {\bf b} \cdot {\bf b} - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

{\bf b} \cdot {\bf b} - {\bf a} \cdot {\bf b} - {\bf a} \cdot {\bf b} + {\bf a} \cdot {\bf a} = {\bf a} \cdot {\bf a} + {\bf b} \cdot {\bf b} - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

{\bf b} \cdot {\bf b} - 2 {\bf a} \cdot {\bf b} + {\bf a} \cdot {\bf a} = {\bf a} \cdot {\bf a} + {\bf b} \cdot {\bf b} - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

We can now cancel from the left and right sides and solve for \cos \theta:

- 2 {\bf a} \cdot {\bf b} = - 2 \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel \cos \theta

\displaystyle \frac{ {\bf a} \cdot {\bf b} }{ \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel } = \cos \theta

Finally, we are guaranteed that the angle between two vectors must lie between 0 and \pi (or, in degrees, between 0^\circ and 180^\circ). Since this is the range of arccosine, we are permitted to use this inverse function to solve for \theta:

\cos^{-1} \left( \displaystyle \frac{ {\bf a} \cdot {\bf b} }{ \parallel \! \! {\bf a} \! \! \parallel \parallel \! \! {\bf b} \! \! \parallel } \right) = \theta

The good news is that there’s nothing special about two dimensions in the above proof, and so this formula may used for vectors in \mathbb{R}^n for any dimension n \ge 2.

In the next post, we’ll consider how this same problem can be solved — but only in two dimensions — using arctangent.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.