In this series of posts, I consider how two different definitions of the number are related to each other. The number is usually introduced at two different places in the mathematics curriculum:

Algebra II/Precalculus: If dollars are invested at interest rate for years with continuous compound interest, then the amount of money after years is .

Calculus: The number is defined to be the number so that the area under the curve from to is equal to , so that

.

These two definitions appear to be very, very different. One deals with making money. The other deals with the area under a hyperbola. Amazingly, these two definitions are related to each other. In this series of posts, I’ll discuss the connection between the two.

We begin with the second definition, which is usually considered the true definition of . From this definition, I have shown in a previous post that we can derive the differentiation formulas

(A second proof of this theorem, using L’Hopital’s Rule, will be presented in tomorrow’s post.)

This firmly established, at last, the connection between the continuous compound interest formula and the area under the hyperbola. I’ve noted that my students feel a certain sense of accomplishment after reaching this point of the exposition.

I'm a Professor of Mathematics and a University Distinguished Teaching Professor at the University of North Texas. For eight years, I was co-director of Teach North Texas, UNT's program for preparing secondary teachers of mathematics and science.
View all posts by John Quintanilla

Published

One thought on “Different definitions of e (Part 9): Connecting the two definitions”

## One thought on “Different definitions of e (Part 9): Connecting the two definitions”