Engaging students: Finding the area of a square or rectangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Trent Pope. His topic, from Geometry: finding the area of a square or rectangle.

green line

How could you as a teacher create an activity or project that involves your topic?

On this website I saw that the Kelso High School GIC students went out and built a home as a class project. They were able to get a $13,000 grant from Lowe’s Home Improvement and blueprints from Fleetwood Homes to go out and build a physical house. I like the idea of having students use geometry in a real world application, as a teacher I would bring this idea to paper. Students would design and create blueprints for their dream house using squares and rectangles. I would start by giving them the total area their house will be. For example, I would tell them to make the blueprints for a 400 square foot house. They could have anywhere from 5 rooms to 20 rooms in their house. They will be responsible for showing the measurements for each room. After creating the layout of the house and calculating the areas of each room, students will be given a set amount of money to spend on flooring. They will then calculate the cost to put either carpet, wood, or tile in each room. This is to have students decide if they would have enough money to have a large room and if so what flooring would be best. There are other aspects you can add to this project to make it more personalized, but as teachers we just want to make sure we are having students find the area of square and rectangles.

http://tdn.com/news/local/geometry-in-construction-class-finishes-building-first-home/article_74143492-d7a9-11e2-995a-001a4bcf887a.html

 

green line

How has this topic appeared in the news?

There are many instances of where area made the news. I found multiple websites that talk about how schools are having building projects for geometry and construction classes. These students are building homes from 128 square feet to 400 square feet. Teachers are having students make these homes so that they can see that geometry is in the real world. By having a range of sizes, students have to adjust their calculations. When creating a house or mobile home you need to accommodate for walking space in each room. In order for students to know if there is enough space, they must find the area of each room. Teachers are using this project because blueprints for houses only use squares and rectangles, making it easier for students to practice solving for area of these shapes. This is just the start of teachers making the concept of area more applicable.

http://design.northwestern.edu/projects/profiles/tiny-house.html

 

green line

How have different cultures throughout time used this topic in their society?

The topic of finding area of squares and rectangles is used throughout many cultures. In the Native American culture along with todays, we see it in growing crops. A farmer must know how big their crop is so they can figure out how much food they will have at harvest. An instance used by many cultures is creating monuments in the shape of square pyramids. In order to build it the right way, you must know the area of the bottom base to build on top of that. A final use of it in our culture is in construction, when we decide how we want to build a building. The concept of area is something that many cultures use today because of how easy it is to calculate. This creates a great way for cultures that are less educated to become familiar with the same concepts as other cultures.

References

Geometry in Construction class finishes building first home. n.d. <http://tdn.com/news/local/geometry-in-construction-class-finishes-building-first-home/article_74143492-d7a9-11e2-995a-001a4bcf887a.html&gt;.
Tiny House Project. n.d. 6 10 2017. <http://design.northwestern.edu/projects/profiles/tiny-house.html&gt;.

 

Proof without words: Pythagoras for a clipped rectangle

Source: https://www.facebook.com/photo.php?fbid=494951053971731&set=a.416585131808324.1073741827.416199381846899&type=1&theater

Engaging students: Finding the area of a square or rectangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Juan Guerra. His topic, from Geometry: finding the area of a square or rectangle.

green line

E1.       How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

The website below contains an activity that relates both perimeter and area. In particular, the activity stimulates the student’s mind by making them think of a way to get the amount of fencing that they would need in order to build the stable for animals. After the character in the game learns about perimeter, he is made to think about the area that would be created from the stable. Then the activity mentions the different possibilities of getting the same perimeter but at the same time, the area of each different possibility is also analyzed. The activity makes students realize that even though all stables have the same perimeter, the area was different most of the time. The activity also has the students practice taking measurements and finding the perimeter and area of rectangles. This activity targets multiple objectives and skills because students learn about perimeter, area, and go over measuring the sides with a virtual ruler. This website contains more interactive games that target multiple skills, which will be helpful to the teachers when planning a lesson. Aside from having interactive games, the website also contains videos on tutorials for some basic computations or definitions of terms in math.

http://www.mathplayground.com/area_perimeter.html

green line

F3.   How did people’s conception of this topic change over time?

Ancient civilizations have known how to compute the area of basic figures including the square and the rectangle. These civilizations include the Egyptians, Babylonians, and Hindus. The Babylonians actually had a different formula for the area of a square or rectangle. The formula we know today is a*b, where a and b are the lengths of the figure. The Babylonian formula for multiplying two numbers, which was essentially the same as finding the area was [(a + b)2 – (ab)2]/4. Looking at the formula, it is clear that they had a different perception of what it was to find the product of two numbers and also the area of a square or rectangle. It turns out that the Babylonians were the only ones who used a different formula for the area of a rectangle or square, which means that they saw area differently than the other two civilizations. Another person that represented area was Euclid. In his book named Euclid’s Elements, he showed how multiplying two numbers would look geometrically, which was by taking a segment with length a and another segment with length b and putting them together so that they form a right angle at the ends and completing the rectangle by adding the other two missing sides. This method was used for visualizing the multiplication of numbers but it was also the representation of what area looked like geometrically although Euclid did not mention in his book that this was called area.

http://en.wikipedia.org/wiki/Egyptian_geometry

http://www-history.mcs.st-and.ac.uk/HistTopics/Babylonian_mathematics.html

green line

B1.   How can this topic be used in your students’ future courses in mathematics or science?

In the future, students will need to know the concept of area in general in order to solve other types of problems in courses like calculus. To illustrate a better example, suppose you have the equation y = x. What if you wanted a student to find the area of the triangle formed on the interval from 0 to 5? It would seem obvious that when the student graphs it and creates the triangle from that interval, he or she would use the formula for the area of a triangle once they are able to find the base and the height of the triangle. Another example where they would have to find the area of a rectangle would be when they have an equation like y = 5. Let’s say that you wanted to find the area of the rectangle formed from 0 to 4. The student would naturally use the formula that has been known to them for a long time and plug in the numbers. So what if we asked them to find the area of the function y = x^2 from 0 to 10? Would the student be able to use the formulas for area that he or she knows? This is where the concept of integration can be introduced to the student. The student might develop the curiosity of wanting to find out how it would be possible to find the area under a curve since the formulas for area that he or she has known all along do not apply. This is only one example where area can be seen in future courses but it seems like an activity like this would naturally lead into integration in a calculus class.

 

Engaging students: Solving for unknown parts of rectangles and triangles

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my student Brittney McCash. Her topic, from Pre-Algebra: solving for unknown parts of rectangles and triangles.

green line

A2. How could you as a teacher create an activity or project that involves your topic?

As a teacher, I want to do activities that the students would enjoy as much as possible. In doing so, I came up with a festive idea to incorporate my concept. Gingerbread houses. They are fun to build, while at the same time your thinking mathematically without realizing it. My job would be to bring these concepts forth. My engagement for the activity would probably be video on the shapes it takes to build a gingerbread house. Then I would pass out a blueprint of a gingerbread house that has missing angles or sides and have the students solve for them. This allows them to either set up proportions and see the similarities, or to solve for the sides using the characteristics of the shapes given. After the exploration of the blueprint, would come the construction part. I would have pre-cut pieces of graham crackers or other materials I would use, and have the students pick the pieces that match their blueprint; not every student will have the same. This is where the fun part would come. They would get to construct their gingerbread house, but if they made mistakes during their blueprint, their gingerbread house wouldn’t look right. Shapes wouldn’t fit, or maybe the gingerbread house wouldn’t stand because it didn’t have the right support. As these issues come up, I would be there to guide them in their discovery of “What went wrong.” This leads them to see how important having the corrects measurements truly are and how major they can effect the outcomes of things. Depending on the length of class time you have, this would probably be a two day activity.

floorplangreen line

B1. How can this topic be used in your students’ future courses in mathematics or science?

To engage the students with this topic, I would pose a question asking the students, “What would happen if the Eiffel Tower wasn’t congruent on all four sides?” This question alone opens the floor for many different discussions to take place, but my main goal would be to establish what congruent is by definition, and how does that effect shapes and their placement. Through this question we would come to the conclusion that  the tower would either lean, not be sturdy, or maybe not even stand at all if the sides of the Eiffel Tower were not congruent. This shows how important measurements are when building buildings. My next step would be to go over how to solve for sides of triangles or squares if they are congruent. Once this is established, I can pose the question, “Now what if we were not given any angles or measurements? How could we tell if triangles are congruent?” This opens the room up for ideas how this would be done, and I would introduce the Theorems of Side-Angle-Side, Side-Side-Side, Angle-Side-Angle, and Angle-Angle-Side. Without going to extreme detail, I would express how important it is for them to grasp the concepts of solving for unknowns on triangles so that they are able to later, in Geometry, understand and utilize the idea for the theorems.

green line

E1. How can technology, be used to effectively engage students with this topic?

No matter where you go these days, technology is everywhere, so why not embrace it? There are two ways that technology can be useful in the classroom. One with websites or activities online that shed new light to a topic that is being taught, and also by helping students learn skills on technology that they will need later on. There are not many jobs out there, if any that do not use technology, so helping students get a grasp on it sooner rather than later may help them later on. My engagement for this aspect on my topic would be to do an online activity. Depending on the school, this will either be done in the classroom or a computer lab. I’ll have the students log on and open up this website: Cool Math . This website would be terrific in opening up this subject. I believe this because it doesn’t just jump right in to solving for unknowns. It gives you a quick overview of the relationships certain shapes have, then it gives you an odd geometric figure to find the perimeter of. This figure only has so many measurements given to them, and they have to solve for the rest using the relationships and definitions of the shapes involved. Another really interesting attribute I liked about this website, was that each shape had its own color. When it came time to solve for the big oddly shaped geometric figure, each shape involved was colored differently. This is great because I know how hard it is for some students to distinguish shapes from one another, and this might be a way for them to better visual the shape and its encountering partners to help tell what the relationship may be.

Engaging students: Finding the area of a square or rectangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Kayla (Koenig) Lambert. Her topic, from Geometry: finding the area of a square or rectangle.

green line

B) Curriculum: How can this topic be used in student’s future courses in math or science?

 Finding the area of a square or rectangle can be applied in many other subjects throughout a student’s school career. This topic is learned around 4th or 5th grade, and around this time students will just be using the formulas to find the areas. In middle school, they might be finding the areas by way of more difficult problems, like word problems. The real fun for this subject, in my opinion, doesn’t start until high school. In high school you can use the area of squares and rectangles to find the solutions to many problems. In high school geometry, the Pythagorean Theorem is taught. The area of squares is related to this depending on how the teacher presents this to the student. The Pythagorean Theorem states that “in any right triangle, the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares whose sides are the two legs of the right triangle” (Square-geometry).

In college, possibly high school calculus, students will learn to approximate the total area under a curve (or integral) using the Riemann Sum. To approximate the integral, you find the area of each rectangle, and all of the rectangles areas added together give you the approximated integral. The area of rectangles is also used in Statistics. When creating a histogram, you multiply the height (density) and width of the bars (rectangles).  Then adding the areas (relative frequencies) of all of the bars should be equal to one. Students will also need to use the area of squares and rectangles on college placement exams and standardized testing.

 

green line

C) Culture: How has this topic appeared in high culture (art, classical music, theatre, etc.)?

 In my opinion, anything and everything is a form of art, so the area of squares and rectangles can appear in an infinite amount of high culture. M.C. Escher has used squares and rectangles to create tessellations and “portrayed mathematical relationships among shapes, figures and space” (MC Escher). The area of a rectangle was used to Polykeitos the Elder who was a Greek sculptor. He used the area of a rectangle to create the perfect ratio for the human body. Painters also needed to figure out how to depict 3D scenes onto 2D canvas during the Renaissance (Mathematics and Art).

However, one of the more well-known applications of mathematics in art is the Golden Rectangle, which just so happens to involve the area of squares and rectangles. The Golden Rectangle is the area of the original rectangle to the area of the square, which is also the Golden Ratio. In other words, the Golden Rectangle is a rectangle wherein the ratio of its length to its width is the Golden Ratio (Golden Rectangle). Many ancient art and architecture have incorporated the Golden Rectangle into designs. The Golden Rectangle was used in the floor plans and design of the exterior of The Parthenon, which was a Greek temple dedicated to goddess Athena in 5th century BC (Mathematics and Art). Leonardo DaVinci also used the Golden Rectangle in his work. When painting the Mona Lisa, he used this to “draw attention to the face of the woman in the portrait” (Mathematics and Art). DaVinci also used the Golden Rectangle in the Last Supper using it to create a “perfect harmonic balance between placement of characters in the background” and also used it to arrange the characters around the table (Mathematics and Art).

 

green line

D) History: Who were some of the people who contributed to the development of this topic?

 Finding the area of squares and rectangles didn’t just come out of the blue; we can thank geometry and ancient mathematics for the development of this topic. One person in particular who contributed to the development of this topic was Euclid, or Euclid of Alexandria, who was a Greek mathematician and known as the “Father of Geometry” (Euclid). He was said to revolutionize geometry and his book The Elements is considered the most influential textbook of all time (History of Mathematics). The collection of his books, all thirteen of them, contain all traditional school geometry (Solomon).

However, Euler wasn’t the only one to contribute to this topic. Pythagoras and his students discovered most of what high school students learn in geometry today (History of Mathematics). In the classical period, Aryabhata wrote a treatise including the computation of areas. From the kingdom of Cao Wei, Liu Hui edited and commented on The Nine Chapters of Mathematics Art in 179 AD (History of Mathematics). There are so many people who contributed to this topic, and people are still contributing and developing to the area of squares and rectangles today!

 

Works Cited

“Euclid – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia.  20 Feb. 2012. http://en.wikipedia.org/wiki/Euclid.

“Golden Rectangle.” Logicville : Puzzles and Brainteasers.  20 Feb. 2012. http://www.logicville.com/sel26.htm.

“M. C. Escher – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 20 Feb. 2012. http://en.wikipedia.org/wiki/M._C._Escher.

“Mathematics and art – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia.  20 Feb. 2012. http://www.en.wikipedia.org/wiki/Mathematics_and_art.

Solomon, Robert. The Little Book Of Mathematical Principals, Theories and Things. New York: Metro Books, 2008.

“Square (geometry) – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 20 Feb. 2012. http://en.wikipedia.org/wiki/Square_(geometry).

“History of mathematics – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 20 Feb. 2012. http://en.wikipedia.org/wiki/History_of_mathematics.

 

Engaging students: Solving for unknown parts of triangles and rectangles

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Michelle McKay. Her topic, from Algebra I: solving for unknown parts of triangles and rectangles.

green line

A. How could you as a teacher create an activity or project that involves your topic?

There are several different ideas that immediately come to mind on how to center a lesson around solving for unknown parts of rectangles and triangles. I would like to focus on and describe one. For this particular lesson, the student will start by making a prediction of which side(s) of a shape (triangle or rectangle) has the greatest length. Then, with a partner, they will use rulers and a handout to record the dimensions of both shapes. On the handout, they will work to fill out the chart provided. Then, we will reconvene as a class and talk about the discoveries made. For rectangles, I would ask first about what we found to be consistent for every rectangle. Using what we know, how we could find or solve for the length of one side if we only had certain parts of information? Similarly for triangles, I would begin by asking how each side differed from one another. Did the general shapes of the triangles make a difference? What was special about the right triangles? After these questions, I would introduce Pythagorean’s Theorem and have them solve for the side of triangles without rulers, then follow up with using rulers to verify their information.

green line

D. What interesting things can you say about the people who contributed to the discovery and/or the development of this idea?

Pythagoras of Samos: During Pythagoras’ time, math was considered to be a mixture of both religious and scientific beliefs and was often associated with secret societies and only those of very high social standing. As Pythagoras was one of the more influential mathematicians of his time, most details of his life were kept secret until centuries after his death, leaving very little reliable information to be pieced together in form of a biography. It is generally accepted that he was born on the island of Samos, which is now incorporated into the country of Greece. Little is known about his childhood, but most agree that he was very well educated and was acquainted with geometry before he traveled to Egypt. He was known to be almost sacrosanct and divine to those alive during his time and even a few well after his death. He founded a religious, and simultaneously mathematical, movement called Pythagoreanism, which consisted of two schools of thought: the “learners” and the “listeners”.

green line

D. What are the contributions of various cultures to this topic?

Time Period

Civilization

Contribution

Earliest known references:

23rd Century B.C.

Babylonians

–          Had rules for generating Pythagorean triples.

–          Comprehended the relationship of a right triangle’s sides.

–          Discovered the relationship of \sqrt{2}.

 

500 – 200 B.C.

Chinese

–          Gives a statement and geometrical demonstration of the Pythagorean Theorem (possibly before Pythagoras’ time).

 

570 – 495 B.C.

Greek

–          Golden rectangles were very vaguely referenced by Plato.

–          Euclid wrote a clear definition of what a rectangle is.

–          Pythagoras discovered a relationship between the sides of right triangles.

 

Earliest known references:
800 – 600 B.C.

Indian

–          Pythagorean Theorem was utilized in forming the proper dimensions for religious altars.

It is very hard to for historians to pinpoint with exact certainty which civilization was the first to discover what we know now as the Pythagorean Theorem. Many of the civilizations listed above existed during the same time period, but were geographically located on opposite ends of the map. Also due to loss of information from translations, damaged or completely destroyed texts, these dates and the authenticity of certain contributions are still debated to this day.

 Sources

  1. http://www-history.mcs.st-and.ac.uk/Biographies/Pythagoras.html
  2. http://ualr.edu/lasmoller/pythag.html
  3. http://www-history.mcs.st-and.ac.uk/Biographies/Euclid.html
  4. http://plato.stanford.edu/entries/pythagoreanism/

Collaborative Mathematics: Challenge 07

My colleague Jason Ermer has posted his 7th challenge video, shown below. It’s both an experiment and an exercise in probability.

Video responses can be posted to his website, http://www.collaborativemathematics.org. In the words of his website, this is a unique forum for connecting a worldwide community of mathematical problem-solvers, and I think these unorthodox but simply stated problems are a fun way for engaging students with the mathematical curriculum.

Collaborative Mathematics: Challenge 05

My colleague Jason Ermer is back from summer hiatus and has posted his fifth challenge video, shown below.

Video responses can be posted to his website, http://www.collaborativemathematics.org. In the words of his website, this is a unique forum for connecting a worldwide community of mathematical problem-solvers, and I think these unorthodox but simply stated problems are a fun way for engaging students with the mathematical curriculum.

Engaging students: Finding the area of a square or rectangle

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Alyssa Dalling. Her topic, from Geometry: finding the area of a square or rectangle.

green line

D. How have different cultures throughout time used this topic in their society?

Giza

  • For three thousand years, the Great Pyramid of Giza was the world’s tallest man-made structure. It is also the oldest structure of the Seven Wonders of the Ancient World. It was built by cutting huge stones into rectangles then placing each stone into place to create the base. It is believed by many that the pharaoh Khufu had his vizier Hemon create the design for the great Pyramids. What is amazing about the design of the Pyramid of Giza is that each of the four sides of the base has an average error of only 58 millimeters in length. Meaning the base is almost a perfect square!
  • It would be fun to start the engage with introducing the Pyramid of Giza and explaining the facts above. Then students would be given the dimensions of other pyramids where they would have to find the area of the base to see whether they created a square or rectangular pyramid. This would get them excited about this topic because students would be exploring math that has actually been used in real life.

Castillo

  • The Mesoamericans also built pyramids with square and rectangular bases. The picture above is in a city known as Chechen Itza which is located in the Mexican state of Yucatan. It is called El Castillo, and also known as the Temple of Kukulkan. Unlike the Egyptian pyramids though, the Mayan pyramids were usually meant as steps to get to a temple on top. The pyramids consisted of several square bases stacked onto each other with steps up each side. El Castillo consists of nine square terraces each about 8.4 feet tall. The main base of the pyramid is approximately 55.3 meters (181 feet).
  • What would be fun to do is have students find the area of each level and compare it to all the levels on the pyramid. I feel students would have fun seeing just how big this type of structure is and understanding the planning it took to create the different levels in this pyramid.

Sources: http://en.wikipedia.org/wiki/Great_Pyramid_of_Giza and http://en.wikipedia.org/wiki/Pyramids#Nigeria

green line

B. How can this topic be used in your students’ future courses in mathematics or science?

  • Finding the area of squares and rectangles will be used a lot in Algebra and Algebra II. One example in Algebra is when students start solving for unknown variables. A student would be asked to find the area of a square when they have two unknown sides.
  • The following is an example engage problem students would use the finding the area of a square or rectangle to solve.

Principal Smith has decided the school needs a new practice basketball court. The current practice court is a square with an area of 144 square feet. She wants the new court to be a rectangle twice as long as it is wide. Find the length of all the sides of both the old court and the new court and find the area of the new court.

rect1rect2

x^2 = 144

So x = 12

Then x(2x) = 2x^2 = 2(12)^2 = 288

The square court has sides of 12.

The rectangular court has sides of 12×24 and an area of 288 square feet.