The Incomplete Gamma and Confluent Hypergeometric Functions (Part 3)

In the previous post, I confirmed the curious integral

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \displaystyle e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s},

where the right-hand side is a special case of the confluent hypergeometric function when a is a positive integer, by differentiating the right-hand side. However, the confirmation psychologically felt very unsatisfactory — we basically guessed the answer and then confirmed that it worked.

A seemingly better way to approach the integral is to use the Taylor series representation of e^{-t} to integrate the left-hand side term-by-term:

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \int_0^z t^{a-1} \sum_{n=0}^\infty \frac{(-t)^n}{n!} \,  dt

= \displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{n!} \int_0^z t^{a+n-1} \, dt

= \displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{z^{a+n}}{a+n}.

Well, that doesn’t look like the right-hand side of the top equation. However, the right-hand side of the top equation also has a e^{-z} in it. Let’s also convert that to its Taylor series expansion and then use the formula for multiplying two infinite series:

\displaystyle e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} = \left( \sum_{s=0}^\infty \frac{(-z)^s}{s!} \right) \left( \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} \right)

= \displaystyle z^a \left( \sum_{s=0}^\infty \frac{(-1)^s z^s}{s!} \right) \left( \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^s \right)

= \displaystyle z^a \sum_{n=0}^\infty \sum_{s=0}^n \frac{(-1)^s z^s}{s!} \frac{(a-1)!}{(a+n-s)!} z^{n-s}

= \displaystyle \sum_{n=0}^\infty \sum_{s=0}^n \frac{(-1)^s}{s!} \frac{(a-1)!}{(a+n-s)!} z^{a+n}

Summarizing, apparently the following two infinite series are supposed to be equal:

\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{z^{a+n}}{a+n} = \sum_{n=0}^\infty \sum_{s=0}^n \frac{(-1)^s}{s!} \frac{(a-1)!}{(a+n-s)!} z^{a+n},

or, matching coefficients of z^{a+n},

\displaystyle \frac{(-1)^n}{n! (a+n)} = \sum_{s=0}^n \frac{(-1)^s (a-1)!}{s! (a+n-s)!}.

When I first came to this equality, my immediate reaction was to throw up my hands and assume I made a calculation error someplace — I had a hard time believing that this sum from s=0 to s=n was true. However, after using Mathematica to evaluate this sum for about a dozen different values of n and a, I was able to psychologically assure myself that this identity was somehow true.

But why does this awkward summation work? This is no longer a question about integration: it’s a question about a finite sum with factorials. I continue this exploration in the next post.

The Incomplete Gamma and Confluent Hypergeometric Functions (Part 2)

In this series of posts, I confirm this curious integral:

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \displaystyle \frac{z^a e^{-z}}{a} M(1, 1+a, z),

where the confluent hypergeometric function M(a,b,z) is

M(a,b,z) = \displaystyle 1+\sum_{s=1}^\infty \frac{a(a+1)\dots(a+s-1)}{b(b+1)\dots (b+s-1)} \frac{z^s}{s!}.

This integral can be confirmed — unsatisfactorily confirmed, but confirmed — by differentiating the right-hand side. For the sake of simplicity, I restrict my attention to the case when a is a positive integer. To begin, the right-hand side is

\displaystyle \frac{z^a e^{-z}}{a} M(1, 1+a, z) = \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{1 \cdot 2 \cdot \dots \cdot s}{(a+1)(a+2)\dots (a+s)} \frac{z^s}{s!} \right]

= \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{1}{(a+1)(a+2)\dots (a+s)} z^s \right]

= \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{a!}{(a+s)!} z^s \right]

= \displaystyle \frac{z^a e^{-z}}{a} \sum_{s=0}^\infty \frac{a!}{(a+s)!} z^s

= \displaystyle e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s}.

We now differentiate, first by using the Product Rule and then differentiating the series term-by-term (blatantly ignoring the need to confirm that term-by-term differentiation applies to this series):

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] = \displaystyle \frac{d}{dz} \left[ e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} \right]

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \frac{d}{dz} \left[  \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} \right]

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} \frac{d}{dz} z^{a+s}

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} (a+s) z^{a+s-1}

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1}.

We now shift the index of the first series:

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] =-e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1}.

By separating the s=0 term of the second series, the right-hand side becomes:

\displaystyle -e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} + e^{-z} \frac{(a-1)!}{(a-1)!} z^{a-1} + e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} = e^{-z} z^{a-1}$

since the two infinite series cancel. We have thus shown that

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] = \frac{e^{-z} z^{a-1}}{a}.

Therefore, we may integrate the right-hand side:

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \left[\frac{t^a e^{-t}}{a} M(1, 1+a, t) \right]_0^z

\displaystyle = \frac{z^a e^{-z}}{a} M(1, 1+a, z) - \frac{0^a e^{0}}{a} M(1, 1+a, 0)

\displaystyle = \frac{z^a e^{-z}}{a} M(1, 1+a, z).

While this confirms the equality, this derivation still feels very unsatisfactory — we basically guessed the answer and then confirmed that it worked. In the next few posts, I’ll consider the direct verification of this series.

The Incomplete Gamma and Confluent Hypergeometric Functions (Part 1)

Yes, the title of this post is a mouthful.

While working on a research project, a trail of citations led me to this curious equality in the Digital Library of Mathematical Functions:

\gamma(a,z) = \displaystyle \frac{z^a e^{-z}}{a} M(1, 1+a, z),

where the incomplete gamma function \gamma(a,z) is

\gamma(a,z) = \displaystyle \int_0^z t^{a-1} e^{-t} \, dt

and the confluent hypergeometric function M(a,b,z) is

M(a,b,z) = \displaystyle 1+\sum_{s=1}^\infty \frac{a(a+1)\dots(a+s-1)}{b(b+1)\dots (b+s-1)} \frac{z^s}{s!}.

While I didn’t doubt that this was true — I don’t doubt this has been long established — I had an annoying problem: I didn’t really believe it. The gamma function

\Gamma(a) = \displaystyle \int_0^\infty t^{a-1} e^{-t} \, dt

is a well-known function with the famous property that

\Gamma(n+1) = n!

for non-negative integers n; this is often seen in calculus textbooks as an advanced challenge using integration by parts. The incomplete gamma function \gamma(a,z) has the same look as \Gamma(a), except that the range of integration is from 0 to z (and not \infty). The gamma function appears all over the place in mathematics courses.

The confluent hypergeometric function, on the other hand, typically arises in mathematical physics as the solution of the differential equation

z f''(z) + (b-z) f'(z) - af(z) = 0.

As I’m not a mathematical physicist, I won’t presume to state why this particular differential equation is important — except that it appears to be a niche equation that arises in very specialized applications.

So I had a hard time psychologically accepting that these two functions were in any way related.

While ultimately unimportant for advancing mathematics, this series will be about the journey I took to directly confirm the above equality.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 9: Pedagogical Thoughts

At long last, we have reached the end of this series of posts.

The derivation is elementary; I’m confident that I could have understood this derivation had I seen it when I was in high school. That said, the word “elementary” in mathematics can be a bit loaded — this means that it is based on simple ideas that are perhaps used in a profound and surprising way. Perhaps my favorite quote along these lines was this understated gem from the book Three Pearls of Number Theory after the conclusion of a very complicated proof in Chapter 1:

You see how complicated an entirely elementary construction can sometimes be. And yet this is not an extreme case; in the next chapter you will encounter just as elementary a construction which is considerably more complicated.

Here are the elementary ideas from calculus, precalculus, and high school physics that were used in this series:

  • Physics
    • Conservation of angular momentum
    • Newton’s Second Law
    • Newton’s Law of Gravitation
  • Precalculus
    • Completing the square
    • Quadratic formula
    • Factoring polynomials
    • Complex roots of polynomials
    • Bounds on \cos \theta and \sin \theta
    • Period of \cos \theta and \sin \theta
    • Zeroes of \cos \theta and \sin \theta
    • Trigonometric identities (Pythagorean, sum and difference, double-angle)
    • Conic sections
    • Graphing in polar coordinates
    • Two-dimensional vectors
    • Dot products of two-dimensional vectors (especially perpendicular vectors)
    • Euler’s equation
  • Calculus
    • The Chain Rule
    • Derivatives of \cos \theta and \sin \theta
    • Linearizations of \cos x, \sin x, and 1/(1-x) near x \approx 0 (or, more generally, their Taylor series approximations)
    • Derivative of e^x
    • Solving initial-value problems
    • Integration by u-substitution

While these ideas from calculus are elementary, they were certainly used in clever and unusual ways throughout the derivation.

I should add that although the derivation was elementary, certain parts of the derivation could be made easier by appealing to standard concepts from differential equations.

One more thought. While this series of post was inspired by a calculation that appeared in an undergraduate physics textbook, I had thought that this series might be worthy of publication in a mathematical journal as an historical example of an important problem that can be solved by elementary tools. Unfortunately for me, Hieu D. Nguyen’s terrific article Rearing Its Ugly Head: The Cosmological Constant and Newton’s Greatest Blunder in The American Mathematical Monthly is already in the record.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6i: Rationale for Method of Undetermined Coefficients VI

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

In the last few posts, I’ve used a standard technique from differential equations: to solve the nth order homogeneous differential equation with constant coefficients

a_n y^{(n)} + \dots + a_3 y''' + a_2 y'' + a_1 y' + a_0 y = 0,

we first solve the characteristic equation

a_n r^n + \dots + a_3 r^3 + a_2 r^2 + a_1 r + a_0 = 0

using techniques from Precalculus. The form of the roots r determines the solutions of the differential equation.

While this is a standard technique from differential equations, the perspective I’m taking in this series is scaffolding the techniques used to predict the precession in a planet’s orbit using only techniques from Calculus and Precalculus. So let me discuss why the above technique works, assuming that the characteristic equation does not have repeated roots. (The repeated roots case is a little more complicated but is not needed for the present series of posts.)

We begin by guessing that the above differential equation has a solution of the form y = e^{rt}. Differentiating, we find y' = re^{rt}, y'' = r^2 e^{rt}, etc. Therefore, the differential equation becomes

a_n r^n e^{rt} + \dots + a_3 r^3 e^{rt} + a_2 r^2 e^{rt} + a_1 r e^{rt} + a_0 e^{rt} = 0

e^{rt} \left(a_n r^n  + \dots + a_3 r^3 + a_2 r^2 + a_1 r  + a_0 \right) = 0

a_n r^n  + \dots + a_3 r^3 + a_2 r^2 + a_1 r  + a_0 = 0

The last step does not “lose” any possible solutions for r since e^{rt} can never be equal to 0. Therefore, solving the differential equation reduces to finding the roots of this polynomial, which can be done using standard techniques from Precalculus.

For example, one of the differential equations that we’ve encountered is y''+y=0. The characteristic equation is r^2+1=0, which has roots r=\pm i. Therefore, two solutions to the differential equation are e^{it} and e^{-it}, so that the general solution is

y = c_1 e^{it} + c_2 e^{-it}.

To write this in a more conventional way, we use Euler’s formula e^{ix} = \cos x + i \sin x, so that

y = c_1 (\cos t + i \sin t) + c_2 (\cos (-t) + i \sin (-t))

= c_1 \cos t + i c_1 \sin t + c_2 \cos t - i c_2 \sin t

= (c_1 + c_2) \cos t + (ic_1 - ic_2) \sin t

= C_1 \cos t + C_2 \sin t.

Likewise, in the previous post, we encountered the fourth-order differential equation y^{(4)}+5y''+4y = 0. To find the roots of the characteristic equation, we factor:

r^4 + 5r^2 + 4r = 0

(r^2+1)(r^2+4) = 0

r^2 +1 = 0 \qquad \hbox{or} \qquad \hbox{or} r^2 + 4 = 0

r = \pm i \qquad \hbox{or} \qquad r = \pm 2i.

Therefore, four solutions of this differential equation are e^{it}, e^{-it}, e^{2it}, and e^{-2it}, so that the general solution is

y = c_1 e^{it} + c_2 e^{-it} + c_3 e^{2it} + c_4 e{-2it}.

Using Euler’s formula as before, this can be rewritten as

y = C_1 \cos t + C_2 \sin t + C_3 \cos 2t + C_4 \sin 2t.

Engaging students: Exponential Growth and Decay

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Ashlyn Farley. Her topic, from Precalculus: exponential growth and decay.

green line

The most current example of exponential growth and decay is with the global pandemic, Covid 19. One example is that The Washington Post wrote an article stating that “The spread of coronavirus boils down to a simple math lesson.” The article goes on to explain what exponential growth is and how that applies to Covid 19.  Another website, ourworldindata.org, has a graph of the daily new cases of Covid 19. This graph allows one to see the information for multiple countries, and starts on January 28th 2020 until Today, whatever day that you may be viewing it. Many other news sources also have graphs and information on the growth, and decay in some cases, of the pandemic situation. Teachers can use this information to easily make a connection from math class to the real world.

green line

One idea of teaching graphing exponential functions so that it is engaging is to use a project over the zombie apocalypse. The spread of a disease is a common and great example of exponential functions, so although this disease is pretend, the idea can be applied in the real world, like with a global pandemic. Three examples of projects are:

  • News Reporters
    • This project has the students analyzing data they received to best report to the people who are dealing with the outbreak. It allows students to learn how to read the graphs of exponential functions, understand the functions, integrate technology into the class by creating news reports, and practice an actual career.
  • Government Officials
    • This project has the students running a simulation of their city. They are to use the statistics of a city to see what the impact of a zombie outbreak would be. After finding the best and worst case scenario, they are to write a letter to the mayor of the city that explains the scenarios so that government can implement plans to keep the outbreak to a minimum. This allows the students a chance to practice analyzing exponential functions, modifying exponential functions, and informing others of the meaning of the functions and modifications.
  • Scientists
    • This project has the students predicting the outcome of a zombie outbreak, finding a cure, and determining at what point is the zombie population controlled. The students will get practice with the exponential functions, making changes to the functions, finding the point of “control”, as well as creating an action plan.

Each of these projects can be used separately or can be combined to create one major project to learn about exponential functions and their graphs. The goal is to get students excited about learning math instead of dreading it. Math is used daily, even if the students don’t realize it, so the understanding of real-life implications is very important for a teacher to bring into the classroom.

green line

Of the many websites, one key website for educators trying to make lessons engaging is YouTube. YouTube has songs, such as the Exponential Function Music Video, explanatory videos, such as from Kahn Academy, and allows students to create their own videos about the topics. Explanatory videos may help students get a specific idea they didn’t quite understand in class, music is very catchy allowing quick memorization of information, and creating videos shows that the students truly have an understanding of the material. By giving the students multiple types of representation of the material, allows all types of learners a chance to understand the material. Multiple representations is very important in keeping students engaged in the class and having them truly learn the material.

Resources:

https://www.teacherspayteachers.com/Product/Zombie-Apocalypse-Exponential-Function-Pandemics-21st-Century-Math-Project-767712?epik=dj0yJnU9UnRuNHVLLUxrV0JkTVJQc1ZFY0szb3JJNXRyenQwb2omcD0wJm49aEQ2UjFHVUcyYm5FakE1ZXhSXzhpQSZ0PUFBQUFBR0ZnTWRB

https://medium.com/innovative-instruction/math-mini-project-idea-the-zombie-apocalypse-5ddd0e6af389#.sph1x08k8

https://www.teacherspayteachers.com/Product/Exponential-Growth-and-Decay-Activity-Exponential-Functions-Zombie-Apocalypse-2609226

https://ourworldindata.org/coronavirus/country/united-states

https://www.washingtonpost.com/weather/2020/03/27/what-does-exponential-growth-mean-context-covid-19/

https://www.youtube.com/watch?v=txMFwOLjZjQ

Engaging students: Solving exponential equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Austin Stone. His topic, from Precalculus: solving exponential equations.

green line

What interesting (i.e., uncontrived) word problems using this topic can your students do now?

Exponential equations can be used in lots of different kinds of word problems. One that is pretty common but is very useful for students involves interest rate. “Megan has $20,000 to invest for 5 years and she found an interest rate of 5%. How much money will she have at the end of 5 years if the interest rate compounds monthly?” I would give them the formula A=P(1+r/n)rt. It is pretty easy to convince students that this is a real-world problem and would get the students engaged about exponential equations. You can also reword the problem to ask for how much Megan started with, what the rate is, or how much time the money was in there. That way students get used to solving equations when the variable is in the exponent and when it is not. This also can lead into or us prior knowledge of natural log to solve for the variable in the exponent.

green line

How could you as a teacher create an activity or project that involves your topic?

Using the basis of the problem I mentioned above, a teacher could create a Project Based Instruction lesson using this idea. The teacher can set up a scenario where, over the course of a week or two, the students would have to decide which bank to make an investment in by calculating how much money they would profit at each bank. The students would have to research different banks and their interest rate. The teacher could also give each group different scenarios where some groups have more money to invest. Students would have to figure out how long they would like to invest. The teacher would give Do It Yourselves and Workshops that deal with solving exponential equations and also getting used to natural log. They would then make a presentation explaining what bank they have chosen and why. They would also have to explain the math that they would have used.

green line

How has this topic appeared in the news?

To say that exponential equations have been in the news lately would be an understatement. It has virtually been the news this year. COVID-19 is a virus and viruses spread exponentially. This would get students engaged immediately because the topic would be relatable to their own lives. Doctors and scientists try to figure out different ways to “flatten the curve”, which essentially means to make the spread of the virus not exponential anymore. We have all heard people on the news telling the public how to stop the virus from spreading and how not make people around you at risk of contracting it (contributing the exponential spread). We all have most likely seen a doctor or scientist show a graph of the virus’s spread and their predictions on how it will look in the upcoming weeks. This would give students a chance to see that what they are learning can be applied to very crucial things going on in the world around them.

References

Exponential Functions

Engaging students: Half-life

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Trenton Hicks. His topic: working with the half-life of a radioactive element.

green line

How can this topic be used in you students’ future courses in mathematics or science?

The topic of half life is a direct intersection of math and chemistry. In addition to being a common precalculus problem, we see half life come up in radioactive decay in chemistry. Half life is a concept that extends all the way into upper college chemistry, physics, and even archaeology when it comes to carbon dating. If students use carbon dating to any extent, they can use half life to determine the age of organic material since carbon 14 is radioactive (Wood). Since half life has to due with nuclear chemistry, this can also tie into nuclear power, since half life is crucial in computations related to efficiency and nuclear engineering. Half life is a form of exponential decay. If students have a thorough understanding of half life, they can better understand other natural phenomena that exhibit properties that are consistent with exponential decay. These phenomena include RC circuits, atmospheric pressure, and toxicity.

green line

In Chernobyl Ukraine, 1986, there was a disaster at a nuclear power plant that has had lasting effects on the environment, people, and culture. The initial explosion was harmful enough, as 2 people lost their lives. Furthermore, radiation leaked into the atmosphere, and it’s speculated that many individuals are suffering the health consequences. When this story first broke, it shook everyone, and scared people away from nuclear power. Lately, there was another documentary that came to light about the incident from HBO. Many people don’t know that the former power plant is still very dangerous to this day. Why? Because the highly radioactive byproducts of the meltdown have half lives that makes them stick around for quite a while. One particularly dangerous isotope, caesium 137, has a half life of about 30 years. This means that in 2016, about half of the caesium decayed. Half of the sheer amount of caesium that was leaked due to the meltdown is still an enormously dangerous amount. News and documentaries report that there’s still a massive constructive effort to contain the radiation. Showing these news stories to students will convey the importance of half life and give them a little bit of insight into how much care should be given to nuclear power.

green line

Half life began as a model proposed by Rutherford in the late 1800’s and very early 1900’s. Rutherford discovered that radioactive decay would turn one element into another. This change happens at a rate that we recognize as exponential decay, hence the model we use is consistent with that idea. Rutherford’s work would soon earn him a Nobel Prize. Other disciplines have taken the idea of “half life,” and have created convincing arguments for how the universe behaves. For instance, toxicology uses half life to convey how potent a dose of toxin is versus long it takes for the body to metabolize the toxin. Another notable development is the blog post on the fs website (linked below) that discusses half lives in terms of how our brains retain information, as well as the information itself. Relaying that half life isn’t just a chemistry or math topic to students, and providing them with this history might just increase the half life on their retaining of the concept.

References:

Fs blog:

Half Life: The Decay of Knowledge and What to Do About It

Sources:
Author: Rachael Wood
https://theconversation.com/explainer-what-is-radiocarbon-dating-and-how-does-it-work-9690#:
~:text=Radiocarbon%20dating%20works%20by%20comparing,but%20different%20numbers%2
0of%20neutrons.&text=While%20the%20lighter%20isotopes%2012,C%20(radiocarbon)%20is
%20radioactive

Click to access ExponentialDecay.pdf

https://www.greenfacts.org/en/chernobyl/toolboxes/half-life-radioisotopes.htm

Click to access Section_4.5.pdf

Engaging students: Exponential Growth and Decay

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Angelica Albarracin. Her topic, from Precalculus: exponential growth and decay.

green line

How could you as a teacher create an activity or project that involves your topic?

During my freshman year of high school, my school offered AP Human Geography. One of the most important figures you learn about in this class is Thomas Malthus, who was an English economist and demographer during the late 1700s and early 1800s. Malthus was most known for his theory that population growth would outpace the world’s food supply. His argument was that since population grows at an exponential rate, and food supply at the time was increasing at a linear rate, then the world would run out of food in a short amount of time. Of course, today we know that Malthus’s theory was incorrect because it did not account for the profound effect that the industrial revolution would have on agriculture. However, if this theory were to be explained to a group of people who may not know what the difference between a linear and exponential function is, the usage of a graph as a visual aid would be extremely helpful.

Given this premise, students may be asked to create a graph with given coordinates to compare the difference between a linear and exponential graph, allowing students to see for themselves why this theory may have been extremely alarming to people during this time. After this, the students may be presented with several different scenarios such as “Graph a constant population of 1 billion vs. a rapidly declining food supply due to locust swarms” or “Graph a sudden population boom 5 years prior to a boom in food supply that increases at twice the rate of the population”. Students could be asked questions such as “Will the population have enough food to survive?” or “How many years will it take for there to be enough food to feed the entire population?”. I think this would be an extremely engaging activity for students as the premise behind it is an interesting piece of mathematical history and students’ imaginations can be engaged during the different scenarios.

green line

How can this this topic be used in your students’ future courses in mathematics or science?

Exponential growth functions are commonly used to model the population growth of a species in Environmental Science. An important concept in Environmental Science is carrying capacity, which is the largest population a habit can support without degradation. Due to the carrying capacity, we typically see S-curves in the population models in Environmental Science as opposed to the normal J-curves. When students are familiar with the rapid rate in which exponential functions can grow, it provides intuitive reasoning for why carrying capacity exists in nature as habits very clearly have a finite amount of resources that cannot possibly support an infinitely growing population.

The concept of radioactive decay and half-lives is also very important in Chemistry. A half-life is a measure of the amount of time it takes for half of a radioactive isotope to decay.  While not all isotopes are radioactive, the ones that are decay at an exponential rate. Having knowledge of an isotopes half-life enables scientists to handle such material safely. Typically, scientists wait to handle such radioactive material until it has decayed below detection limits, which occurs around 10 half-lives. Beyond this, doctors must also use their knowledge of half-lives when using radioactive isotopes to help treat patients. For a radioactive isotope to be useful in this manner, its radioactivity must be active enough to treat the condition, but not too long as to harm healthy cells.

green line

How has this topic appeared in the news?

Historically, exponential growth and decay graphs have been used to model the spread of epidemics/pandemics. Recently, with the advent of the Covid-19 epidemic, we are constantly seeing such graphs all over the news and agency websites such as the CDC. In the graph depicted below, we can see exponential growth in the number of cases around March, a small decline, and then another bout of exponential growth around June. Of course, in the real world, very few data follow an exact mathematical form so using the phrase “exponential growth” is an approximation. However, this exponential trend demonstrates just how contagious this virus is as we can see how thousands of people can be affected in a short amount of time.

This image has an empty alt attribute; its file name is covid.png

During the Australian bushfires that occurred during January 2020, many articles began to attribute this disaster with climate change due to human activity. Though the causes of wildfires are highly variable and difficult to track, many scientists felt that Australia’s record warmth and dryness during the previous year, at the very least, allowed the fires to spread much quicker.    In the graph below, we can see a slight trend between the climate change seen in Australia (as recorded by the Australian Bureau of Meteorology (BOM)) versus the average climate change seen around the world by 41 models. A line of best fit has been drawn through the graph of 41 climate models, though hard to see, allows us to see more clearly that this data set increases at an exponential rate. While it is still difficult to determine whether this climate change can be directly attributed to the wildfires, we can still see our risk for such disasters increase as time goes on.

This image has an empty alt attribute; its file name is wildfire.png

References:

https://www.britannica.com/biography/Thomas-Malthus

https://opentextbc.ca/introductorychemistry/chapter/half-life-2/#:~:text=An%20interesting%20and%20useful%20aspect,initial%20amount%20of%20that%20isotope.

https://www.dummies.com/education/science/chemistry/nuclear-chemistry-half-lives-and-radioactive-dating/

https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases

http://www.bom.gov.au/climate/change/index.shtml#tabs=Tracker&tracker=timeseries&tQ=graph%3Dtmax%26area%3Daus%26season%3D0112%26ave_yr%3D0

https://www.nytimes.com/2020/03/04/climate/australia-wildfires-climate-change.html

Engaging students: Solving exponential equations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Jesus Alanis. His topic, from Precalculus: solving exponential equations.

green line

How could you as a teacher create an activity or project that involves your topic?

An activity for solving exponential equations is Bingo. If you know how to play Bingo, you know that there are many ways to win. You could either have five in a row, blackout, in an X and 4 corners.  In the regular Bingo game, you have a free space, but it is up to you if you want to have a free space or add an extra problem on there. The way I would do the bingo cards is use all the spaces so that means I must create 25 equations with graphs. I am using this website as a reference to get some ideas on how to setup and may even borrow some graphs and equations. The way I would set it up is on the bingo card to have a mix of both equations and graphs. I would also create like a class set and place them in sheet protectors so the students can use expo markers. Since students cannot write on the bingo card, give the students scratch paper so that the students are able to work it out. Once students have solved their Bingo cards, we would start the game, and this would make students not have to worry about a time limit. Students could just play and check their work as well since the students will have the same graphs and equations. During the game, you as the teacher could go over the question and this would be a good time to teach students or show students how the problem will be solved and the answer. This will also give students the how and why the answer is the answer.

green line

How has this topic appeared in the news?

The way exponential equations have appeared in the news is in our current times we are in a pandemic. The coronavirus pandemic to be specific. When the pandemic first started and quarantine had been placed, the news was talking about the number of cases that were being reported. The news had displayed a graph of the number of cases that had happen in a few days. Now the graph has changed to months and the graph is an example of an exponential function. The coronavirus has been a very contagious disease that has taken deaths and sadly there is a graph for this to and it is exponential. The graphs that are being displayed are of exponential function and sadly they are exponential growth functions. This is also a real-world connection of exponential equations and why they are used.

green line

How can technology be used to effectively engage students with this topic?

The way technology can be used to effectively engage students to exponential equations is to show or make students hear the song Billionaire with Bruno Mars. Using the song will make students wake up and be ready for class. It is up to you how long you want to play the song, or you could have it as background music while having these questions posted either on your whiteboard or projector. The question is “Would you rather be given million dollars right now or be given one penny today and each day be given double what you were given the day before for thirty days?”. This question will make students think and start to do math. The question talks about the penny and double each previous day’s amount. The value earned is exponential growing. This could also introduce the lesson and reference it to businesses and how they work. This could also be a life lesson about being patient and how things take time to become successful.

Reference