Confirming Einstein’s Theory of General Relativity With Calculus, Part 9: Pedagogical Thoughts

At long last, we have reached the end of this series of posts.

The derivation is elementary; I’m confident that I could have understood this derivation had I seen it when I was in high school. That said, the word “elementary” in mathematics can be a bit loaded — this means that it is based on simple ideas that are perhaps used in a profound and surprising way. Perhaps my favorite quote along these lines was this understated gem from the book Three Pearls of Number Theory after the conclusion of a very complicated proof in Chapter 1:

You see how complicated an entirely elementary construction can sometimes be. And yet this is not an extreme case; in the next chapter you will encounter just as elementary a construction which is considerably more complicated.

Here are the elementary ideas from calculus, precalculus, and high school physics that were used in this series:

  • Physics
    • Conservation of angular momentum
    • Newton’s Second Law
    • Newton’s Law of Gravitation
  • Precalculus
    • Completing the square
    • Quadratic formula
    • Factoring polynomials
    • Complex roots of polynomials
    • Bounds on \cos \theta and \sin \theta
    • Period of \cos \theta and \sin \theta
    • Zeroes of \cos \theta and \sin \theta
    • Trigonometric identities (Pythagorean, sum and difference, double-angle)
    • Conic sections
    • Graphing in polar coordinates
    • Two-dimensional vectors
    • Dot products of two-dimensional vectors (especially perpendicular vectors)
    • Euler’s equation
  • Calculus
    • The Chain Rule
    • Derivatives of \cos \theta and \sin \theta
    • Linearizations of \cos x, \sin x, and 1/(1-x) near x \approx 0 (or, more generally, their Taylor series approximations)
    • Derivative of e^x
    • Solving initial-value problems
    • Integration by u-substitution

While these ideas from calculus are elementary, they were certainly used in clever and unusual ways throughout the derivation.

I should add that although the derivation was elementary, certain parts of the derivation could be made easier by appealing to standard concepts from differential equations.

One more thought. While this series of post was inspired by a calculation that appeared in an undergraduate physics textbook, I had thought that this series might be worthy of publication in a mathematical journal as an historical example of an important problem that can be solved by elementary tools. Unfortunately for me, Hieu D. Nguyen’s terrific article Rearing Its Ugly Head: The Cosmological Constant and Newton’s Greatest Blunder in The American Mathematical Monthly is already in the record.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 8: Second- and Third-Order Approximations

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

In this series, we found an approximate solution to the governing initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \delta [u(\theta)]^2

u(0) = \displaystyle \frac{1 + \epsilon}{\alpha}

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, \epsilon is the eccentricity of the orbit, and c is the speed of light.

We used the following steps to find an approximate solution.

Step 0. Ignore the general-relativity contribution and solve the simpler initial-value problem

u_0''(\theta) + u_0(\theta) = \displaystyle \frac{1}{\alpha}

u_0(0) = \displaystyle \frac{1 + \epsilon}{\alpha}

u_0'(0) = 0,

which is a zeroth-order approximation to the real initial-value problem. We found that the solution of this differential equation is

u_0(\theta) = \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha},

which is the equation of an ellipse in polar coordinates.

Step 1. Solve the initial-value problem

u_1''(\theta) + u_1(\theta) = \displaystyle \frac{1}{\alpha} + \delta [u_0(\theta)]^2

u_1(0) = \displaystyle \frac{1 + \epsilon}{\alpha}

u_1'(0) = 0,

which partially incorporates the term due to general relativity. This is a first-order approximation to the real differential equation. After much effort, we found that the solution of this initial-value problem is

u_1(\theta) = \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta - \frac{ \delta \epsilon^2}{6\alpha^2} \cos 2\theta - \frac{\delta(3+\epsilon^2)}{3\alpha^2} \cos \theta.

For large values of \theta, this is accurately approximated as:

u_1(\theta) \approx \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta,

which can be further approximated as

u_1(\theta) \approx \displaystyle \frac{1}{\alpha} \left[ 1 + \epsilon \cos \left( \theta - \frac{\delta \theta}{\alpha} \right) \right].

From this expression, the precession in a planet’s orbit due to general relativity can be calculated.

Roughly 20 years ago, I presented this application of differential equations at the annual meeting of the Texas Section of the Mathematical Association of America. After the talk, a member of the audience asked what would happen if we did this procedure yet again to find a second-order approximation. In other words, I was asked to consider…

Step 2. Solve the initial-value problem

u_2''(\theta) + u_2(\theta) = \displaystyle \frac{1}{\alpha} + \delta [u_1(\theta)]^2

u_2(0) = \displaystyle \frac{1 + \epsilon}{\alpha}

u_2'(0) = 0.

It stands to reason that the answer should be an even more accurate approximation to the true solution u(\theta).

I didn’t have an immediate answer for this question, but I can answer it now. Letting Mathematica do the work, here’s the answer:

Yes, it’s a mess. The term in red is u_0(\theta), while the term in yellow is the next largest term in u_1(\theta). Both of these appear in the answer to u_2(\theta).

The term in green is the next largest term in u_2(\theta), with the highest power of \theta in the numerator and the highest power of \alpha in the denominator. In other words,

u_2(\theta) \approx \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta -\frac{\delta^2 \epsilon}{2\alpha^3} \theta^2 \cos \theta.

How does this compare to our previous approximation of

u(\theta) \approx \displaystyle \frac{1}{\alpha} \left[ 1 + \epsilon \cos \left( \theta - \frac{\delta \theta}{\alpha} \right) \right]?

Well, to a second-order Taylor approximation, it’s the same! Let

f(x) = \displaystyle \frac{1}{\alpha} \left[ 1 + \epsilon \cos \left( \theta - x \right) \right].

Expanding about x = 0 and treated \theta as a constant, we find

f(x) \approx f(0) + f'(0) x + \displaystyle \frac{f''(0)}{2} x^2 = \displaystyle \frac{1}{\alpha} \left[ 1 + \epsilon \cos \left( \theta\right) \right] + \frac{\epsilon}{\alpha} x \sin \theta - \frac{\epsilon}{2\alpha} x^2 \cos \theta.

Substituting x = \displaystyle \frac{\delta \theta}{\alpha} yields the above approximation for u_2(\theta).

Said another way, proceeding to a second-order approximation merely provides additional confirmation for the precession of a planet’s orbit.

Just for the fun of it, I also used Mathematica to find the solution of Step 3:

Step 2. Solve the initial-value problem

u_3''(\theta) + u_3(\theta) = \displaystyle \frac{1}{\alpha} + \delta [u_2(\theta)]^2

u_3(0) = \displaystyle \frac{1 + \epsilon}{\alpha}

u_3'(0) = 0.

I won’t copy-and-paste the solution from Mathematica; unsurpisingly, it’s really long. I will say that, unsurprisingly, the leading terms are

u_3(\theta) \approx \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta -\frac{\delta^2 \epsilon}{2 \alpha^3} \theta^2 \cos \theta  -\frac{\delta^3 \epsilon}{6\alpha^4} \theta^3 \sin \theta.

I said “unsurprisingly” because this matches the third-order Taylor polynomial of our precession expression. I don’t have time to attempt it, but surely there’s a theorem to be proven here based on this computational evidence.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 7b: Predicting Precession II

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity is

u(\theta) \approx  \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, and c is the speed of light.

We will now simplify this expression, using the facts that \delta is very small and \alpha is quite large, so that \delta/\alpha is very small indeed. We will use the two approximations

\cos x \approx 1 \qquad \hbox{and} \qquad \sin x \approx x \qquad \hbox{if} \qquad x \approx 0;

these approximations can be obtained by linearization or else using the first term of the Taylor series expansions of \cos x and \sin x about x = 0.

We will also need the trig identity

\cos(\theta_1 - \theta_2) = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2.

With these tools, we can now simplify u(\theta):

u(\theta) \approx  \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta

=  \displaystyle \frac{1}{\alpha} \left[1 + \epsilon \cos \theta + \frac{ \delta\epsilon}{\alpha} \theta \sin \theta \right]

=  \displaystyle \frac{1}{\alpha} \left[1 + \epsilon \left(\cos \theta + \frac{ \delta}{\alpha} \theta \sin \theta \right) \right]

=  \displaystyle \frac{1}{\alpha} \left[1 + \epsilon \left(\cos \theta \cdot 1 + \sin \theta \cdot \frac{ \delta \theta}{\alpha}  \right) \right]

\approx  \displaystyle \frac{1}{\alpha} \left[1 + \epsilon \left(\cos \theta \cdot \cos \frac{\delta \theta}{\alpha} + \sin \theta \cdot \sin \frac{ \delta \theta}{\alpha}  \right) \right]

\approx  \displaystyle \frac{1}{\alpha} \left[1 + \epsilon \cos \left( \theta - \frac{\delta \theta}{\alpha}  \right) \right].

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6k: Solving New Differential Equation with Method of Undetermined Coefficients

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In recent posts, we used the method of undetermined coefficients to show that the general solution of the differential equation is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} +\frac{\delta \epsilon}{\alpha^2} \theta \sin \theta- \frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta.

We now use the initial conditions to find the constants c_1 and c_2. (We did this earlier when we solved the differential equation via variation of parameters, but we repeat the argument here for completeness.) From the initial condition u(0) = \displaystyle \frac{1}{P} = \frac{1+\epsilon}{\alpha}, we obtain

u(0) = \displaystyle c_1 \cos 0 + c_2 \sin 0 + \displaystyle \frac{1}{\alpha} +  \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{\delta \epsilon \cdot 0 \cdot \sin 0}{\alpha^2} -\frac{\delta \epsilon^2 \cos 0}{6\alpha^2}

\displaystyle \frac{1+\epsilon}{\alpha} = c_1 + \displaystyle \frac{1}{\alpha} +  \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}  -\frac{\delta \epsilon^2}{6\alpha^2}

\displaystyle \frac{\epsilon}{\alpha} = c_1 + \displaystyle \frac{3\delta +\delta \epsilon^2}{3\alpha^2},

so that

c_1 = \displaystyle \frac{\epsilon}{\alpha} - \frac{\delta(3 + \epsilon^2)}{3\alpha^2}.

Next, we compute u'(\theta) and use the initial condition u'(0) = 0:

u'(\theta) = \displaystyle -c_1 \sin \theta + c_2 \cos \theta + \frac{\delta \epsilon}{\alpha^2} (\sin \theta + \theta \cos \theta) + \frac{\delta \epsilon^2 \sin 2\theta}{3\alpha^2}

u'(0) = \displaystyle -c_1 \sin 0 + c_2 \cos 0 + \frac{\delta \epsilon}{\alpha^2} (\sin 0 + 0  \cos 0) + \frac{\delta \epsilon^2 \sin 0}{3\alpha^2}

0 = c_2.

Substituting these values for c_1 and c_2, we finally arrive at the solution

u(\theta) = \displaystyle \left(\frac{\epsilon}{\alpha} - \frac{\delta(3 + \epsilon^2)}{3\alpha^2} \right) \cos \theta + \displaystyle \frac{1}{\alpha} +  \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{\delta \epsilon \theta \sin \theta}{\alpha^2} -\frac{\delta \epsilon^2 \cos 2\theta}{6\alpha^2}

= \displaystyle \frac{1 + \epsilon \cos \theta}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{ \delta\epsilon}{\alpha^2} \theta \sin \theta - \frac{ \delta \epsilon^2}{6\alpha^2} \cos 2\theta - \frac{\delta(3+\epsilon^2)}{3\alpha^2} \cos \theta.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6j: Rationale for Method of Undetermined Coefficients VII

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

Let me summarize the partial results that we’ve found in the past few posts.

1. The general solution of the associated homogeneous differential equation

u''(\theta) + u(\theta) = 0

is

u_0(\theta) = c_1 \cos \theta + c_2 \sin \theta.

2. One particular solution of the nonhomogeneous differentiatial equation

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}

is

u_1(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}.

3. One particular solution of the nonhomogeneous differential equation

u''(\theta) + u(\theta) = \displaystyle \frac{2\delta \epsilon \cos \theta}{\alpha^2}

is

u_2(\theta) = \displaystyle \frac{\delta \epsilon}{\alpha^2} \theta \sin \theta.

4. One particular solution of the nonhomogeneous differential equatio

u''(\theta) + u(\theta) = \displaystyle  \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

is

u_3(\theta) = \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta.

To solve the original differential equation, we will simply add these four solutions together:

u(\theta) = u_0(\theta) + u_1(\theta) + u_2(\theta) + u_3(\theta)

= c_1 \cos \theta + c_2 \sin \theta + \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} +\frac{\delta \epsilon}{\alpha^2} \theta \sin \theta- \frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta.

It’s a straightforward exercise to show that this new function satisfies the original differential equation:

u''(\theta) + u(\theta) = u_0''(\theta) + u_1''(\theta) + u_2''(\theta) + u_3''(\theta) + u_0(\theta) + u_1(\theta) + u_2(\theta) + u_3(\theta)

=   [u_0''(\theta) +u_0(\theta)]+ [u_1''(\theta)   + u_1(\theta)]+[u_2''(\theta) + u_2(\theta)] + [u_3''(\theta) + u_3(\theta)]

= 0 + \displaystyle \left( \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} \right) + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

= \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

as required.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6i: Rationale for Method of Undetermined Coefficients VI

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

In the last few posts, I’ve used a standard technique from differential equations: to solve the nth order homogeneous differential equation with constant coefficients

a_n y^{(n)} + \dots + a_3 y''' + a_2 y'' + a_1 y' + a_0 y = 0,

we first solve the characteristic equation

a_n r^n + \dots + a_3 r^3 + a_2 r^2 + a_1 r + a_0 = 0

using techniques from Precalculus. The form of the roots r determines the solutions of the differential equation.

While this is a standard technique from differential equations, the perspective I’m taking in this series is scaffolding the techniques used to predict the precession in a planet’s orbit using only techniques from Calculus and Precalculus. So let me discuss why the above technique works, assuming that the characteristic equation does not have repeated roots. (The repeated roots case is a little more complicated but is not needed for the present series of posts.)

We begin by guessing that the above differential equation has a solution of the form y = e^{rt}. Differentiating, we find y' = re^{rt}, y'' = r^2 e^{rt}, etc. Therefore, the differential equation becomes

a_n r^n e^{rt} + \dots + a_3 r^3 e^{rt} + a_2 r^2 e^{rt} + a_1 r e^{rt} + a_0 e^{rt} = 0

e^{rt} \left(a_n r^n  + \dots + a_3 r^3 + a_2 r^2 + a_1 r  + a_0 \right) = 0

a_n r^n  + \dots + a_3 r^3 + a_2 r^2 + a_1 r  + a_0 = 0

The last step does not “lose” any possible solutions for r since e^{rt} can never be equal to 0. Therefore, solving the differential equation reduces to finding the roots of this polynomial, which can be done using standard techniques from Precalculus.

For example, one of the differential equations that we’ve encountered is y''+y=0. The characteristic equation is r^2+1=0, which has roots r=\pm i. Therefore, two solutions to the differential equation are e^{it} and e^{-it}, so that the general solution is

y = c_1 e^{it} + c_2 e^{-it}.

To write this in a more conventional way, we use Euler’s formula e^{ix} = \cos x + i \sin x, so that

y = c_1 (\cos t + i \sin t) + c_2 (\cos (-t) + i \sin (-t))

= c_1 \cos t + i c_1 \sin t + c_2 \cos t - i c_2 \sin t

= (c_1 + c_2) \cos t + (ic_1 - ic_2) \sin t

= C_1 \cos t + C_2 \sin t.

Likewise, in the previous post, we encountered the fourth-order differential equation y^{(4)}+5y''+4y = 0. To find the roots of the characteristic equation, we factor:

r^4 + 5r^2 + 4r = 0

(r^2+1)(r^2+4) = 0

r^2 +1 = 0 \qquad \hbox{or} \qquad \hbox{or} r^2 + 4 = 0

r = \pm i \qquad \hbox{or} \qquad r = \pm 2i.

Therefore, four solutions of this differential equation are e^{it}, e^{-it}, e^{2it}, and e^{-2it}, so that the general solution is

y = c_1 e^{it} + c_2 e^{-it} + c_3 e^{2it} + c_4 e{-2it}.

Using Euler’s formula as before, this can be rewritten as

y = C_1 \cos t + C_2 \sin t + C_3 \cos 2t + C_4 \sin 2t.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6h: Rationale for Method of Undetermined Coefficients V

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In the two previous posts, we derived the method of undetermined coefficients for the simplified differential equations

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}.

and

u''(\theta) + u(\theta) = \displaystyle \frac{2\delta \epsilon \cos \theta}{\alpha^2}.

In this post, we consider the simplified differential equation if the right-hand side has only the fifth term,

u''(\theta) + u(\theta) =  \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}.

Let v(\theta) = \displaystyle \frac{\delta \epsilon^2 }{2\alpha^2} \cos 2\theta. Then v satisfies the new differential equation v'' + 4v = 0. Also, v = u'' + u. Substituting, we find

(u''+u)'' + 4(u''+u) = 0

u^{(4)} + u'' + 4u'' + 4u = 0

u^{(4)} + 5u'' + 4u = 0

The characteristic equation of this new differential equation is

r^4 + 5r^2 + 4 = 0

(r^2 + 1)(r^2 + 4) = 0

r^2 + 1 = 0 \qquad \hbox{or} \qquad r^2 + 4 = 0

r = \pm i \qquad \hbox{or} \qquad r = \pm 2i

Therefore, the general solution of the new differential equation is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + c_3 \cos 2\theta + c_4 \sin 2\theta.

The constants c_3 and c_4 can be found by substituting back into the original differential equation:

u''(\theta) + u(\theta) =  \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

-c_1 \cos \theta - c_2 \sin \theta - 4c_3 \cos 2\theta - 4c_4 \sin 2\theta + c_1 \cos \theta + c_2 \sin \theta + c_3 \cos 2\theta + c_4 \sin 2\theta = \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

- 3c_3 \cos 2\theta - 3c_4 \sin 2\theta  = \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

Matching coefficients, we see that c_3 = \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} and c_4 = 0. Therefore, the solution of the simplified differential equation is

u(\theta) = c_1 \theta + c_2 \theta \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta.

In particular, setting c_1 = 0 and c_2 = 0, we see that

u(\theta) =  \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta

is a particular solution to the simplified differential equation.

In the next post, we put together the solutions of these three simplified differential equations to solve the original differential equation,

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6g: Rationale for Method of Undetermined Coefficients IV

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In this post, we will use the guesses

u(\theta) = f(\theta) \cos \theta \qquad \hbox{or} u(\theta) = f(\theta) \sin \theta

that arose from the technique/trick of reduction of order, where f(\theta) is some unknown function, to find the general solution of the differential equation

u^{(4)} + 2u'' + u = 0.

To do this, we will need to use the Product Rule for higher-order derivatives that was derived in the previous post:

(fg)'' = f'' g + 2 f' g' + f g''

and

(fg)^{(4)} = f^{(4)} g + 4 f''' g' + 6 f'' g'' + 4f' g''' + f g^{(4)}.

In these formulas, Pascal’s triangle makes a somewhat surprising appearance; indeed, this pattern can be proven with mathematical induction.

We begin with u(\theta) = f(\theta) \cos \theta. If g(\theta) = \cos \theta, then

g'(\theta) = - \sin \theta,

g''(\theta) = -\cos \theta,

g'''(\theta) = \sin \theta,

g^{(4)}(\theta) = \cos \theta.

Substituting into the fourth-order differential equation, we find the differential equation becomes

(f \cos \theta)^{(4)} + 2 (f \cos \theta)'' + f \cos \theta = 0

f^{(4)} \cos \theta - 4 f''' \sin \theta - 6 f'' \cos \theta + 4 f' \sin \theta + f \cos \theta + 2 f'' \cos \theta - 4 f' \sin \theta - 2 f \cos \theta + f \cos \theta = 0

f^{(4)} \cos \theta - 4 f''' \sin \theta - 6 f'' \cos \theta  + 2 f'' \cos \theta  = 0

f^{(4)} \cos \theta - 4 f''' \sin \theta - 4 f'' \cos \theta = 0

The important observation is that the terms containing f and f' cancelled each other. This new differential equation doesn’t look like much of an improvement over the original fourth-order differential equation, but we can make a key observation: if f'' = 0, then differentiating twice more trivially yields f''' = 0 and f^{(4)} = 0. Said another way: if f'' = 0, then u(\theta) = f(\theta) \cos \theta will be a solution of the original differential equation.

Integrating twice, we can find f:

f''(\theta) = 0

f'(\theta) = c_1

f(\theta) = c_1 \theta + c_2.

Therefore, a solution of the original differential equation will be

u(\theta) = c_1 \theta \cos \theta + c_2 \cos \theta.

We now repeat the logic for u(\theta) = f(\theta) \sin \theta:

(f \sin \theta)^{(4)} + 2 (f \sin \theta)'' + f \sin \theta = 0

f^{(4)} \sin \theta + 4 f''' \cos \theta - 6 f'' \sin \theta - 4 f' \cos\theta + f \sin \theta + 2 f'' \sin \theta + 4 f' \cos \theta - 2 f \sin \theta + f \sin \theta = 0

f^{(4)} \sin\theta + 4 f''' \cos \theta - 6 f'' \sin \theta + 2 f'' \sin \theta = 0

f^{(4)} \sin\theta - 4 f''' \cos\theta - 4 f'' \sin\theta = 0.

Once again, a solution of this new differential equation will be f(\theta) = c_3 \theta + c_4, so that f'' = f''' = f^{(4)} = 0. Therefore, another solution of the original differential equation will be

u(\theta) = c_3 \theta \sin \theta + c_4 \sin \theta.

Adding these provides the general solution of the differential equation:

u(\theta) = c_1 \theta \cos \theta + c_2 \cos \theta + c_3 \theta \sin \theta + c_4 \sin \theta.

Except for the order of the constants, this matches the solution that was presented earlier by using techniques taught in a proper course in differential equations.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6f: Rationale for Method of Undetermined Coefficients III

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In the previous post, I used a standard technique from differential equations to find the general solution of

u^{(4)} + 2u'' + u = 0.

to be

u(theta) = c_1 \cos \theta + c_2 \sin \theta + c_3 \theta \cos \theta + c_4 \theta \sin \theta.

However, as much as possible in this series, I want to take the perspective of a talented calculus student who has not yet taken differential equations — so that the conclusion above is far from obvious. How could this be reasonable coaxed out of such a student?

To begin, we observe that the characteristic equation is

r^4 + 2r^2 + 1 = 0,

or

(r^2 + 1)^2 = 0.

Clearly this has the same roots as the simpler equation r^2 + 1 = 0, which corresponds to the second-order differential equation u'' + u = 0. We’ve already seen that u_1(\theta) = \cos \theta and u_2(\theta) = \sin \theta are solutions of this differential equation; perhaps they might also be solutions of the more complicated differential equation also? The answer, of course, is yes:

u_1^{(4)} + 2 u_1'' + u_1 = \cos \theta - 2 \cos \theta + \cos \theta = 0

and

u_2^{(4)} + 2u_2'' + u_2 = \sin \theta - 2 \sin \theta + \sin \theta = 0.

The far trickier part is finding the two additional solutions. To find these, we use a standard trick/technique called reduction of order. In this technique, we guess that any additional solutions much have the form of either

u(\theta) = f(\theta) \cos \theta \qquad \hbox{or} \qquad  u(\theta) = f(\theta) \sin \theta,

where f(\theta) is some unknown function that we’re multiplying by the solutions we already have. We then substitute this into the differential equation u^{(4)} + 2u'' + u = 0 to form a new differential equation for the unknown f, which we can (hopefully) solve.

Doing this will require multiple applications of the Product Rule for differentiation. We already know that

(fg)' = f' g + f g'.

We now differentiate again, using the Product Rule, to find (fg)'':

(fg)'' = ( [fg]')' = (f'g)' + (fg')'

= f''g + f' g' + f' g' + f g''

= f'' g + 2 f' g' + f g''.

We now differential twice more to find (fg)^{(4)}:

(fg)''' = ( [fg]'')' = (f''g)' + 2(f'g')' +  (fg'')'

= f'''g + f'' g' + 2f'' g' + 2f' g'' + f' g'' + f g'''

= f''' g + 3 f'' g' + 3 f' g'' + f g'''.

A good student may be able to guess the pattern for the next derivative:

(fg)^{(4)} = ( [fg]''')' = (f'''g)' + 3(f''g')' +3(f'g'')' + (fg''')'

= f^{(4)}g + f''' g' + 3f''' g' + 3f'' g'' + 3f'' g'' + 3f'g''' + f' g''' + f g^{(4)}

= f^{(4)} g + 4 f''' g' + 6 f'' g'' + 4f' g''' + f g^{(4)}.

In this way, Pascal’s triangle makes a somewhat surprising appearance; indeed, this pattern can be proven with mathematical induction.

In the next post, we’ll apply this to the solution of the fourth-order differential equation.

Confirming Einstein’s Theory of General Relativity With Calculus, Part 6e: Rationale for Method of Undetermined Coefficients II

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In the previous post, we derived the method of undetermined coefficients for the simplified differential equation

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}.

In this post, we consider the simplified differential equation if the right-hand side has only the fourth term,

u''(\theta) + u(\theta) =  \displaystyle \frac{2\delta \epsilon }{\alpha^2}\cos \theta.

Let v(\theta) =  \displaystyle \frac{2\delta \epsilon }{\alpha^2}\cos \theta. Then v satisfies the new differential equation v'' + v = 0. Since u'' + u = v, we may substitute:

(u''+u)'' + (u'' + u) = 0

u^{(4)} + u'' + u'' + u = 0

u^{(4)} + 2u'' + u = 0.

The characteristic equation of this homogeneous differential equation is r^4 + 2r^2 + 1 = 0, or (r^2+1)^2 = 0. Therefore, r = i and r = -i are both double roots of this quartic equation. Therefore, the general solution for u is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + c_3 \theta \cos \theta + c_4 \theta \sin \theta.

Substituting into the original differential equation will allow for the computation of c_3 and c_4:

u''(\theta) + u(\theta) = -c_1 \cos \theta - c_2 \sin \theta - 2c_3 \sin \theta - c_3 \theta \cos \theta + 2c_4 \cos \theta - c_4 \theta \sin \theta

+   c_1 \cos \theta + c_2 \sin \theta + c_3 \theta \cos \theta + c_4 \theta \sin \theta

\displaystyle \frac{2\delta \epsilon }{\alpha^2}\cos \theta = - 2c_3 \sin \theta+ 2c_4 \cos \theta

Matching coefficients, we see that c_3 = 0 and c_4 = \displaystyle \frac{\delta \epsilon }{\alpha^2}. Therefore,

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + \displaystyle \frac{\delta \epsilon }{\alpha^2} \theta \sin \theta

is the general solution of the simplified differential equation. Setting c_1 = c_2 = 0, we find that

u(\theta) =  \displaystyle \frac{\delta \epsilon }{\alpha^2} \theta \sin \theta

is one particular solution of this simplified differential equation. Not surprisingly, this matches the result is the method of undetermined coefficients had been blindly followed.

As we’ll see in a future post, the presence of this \theta \sin \theta term is what predicts the precession of a planet’s orbit under general relativity.