In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This submission comes from my former student Chris Brown. His topic: how to engage students when teaching box and whisker plots.

How could you as a teacher create an activity or project that involves your topic?

My all-time favorite TV show as a child was Pokémon. This show is still a staple amongst the young and even adult generation of today. The activity that I have created, was designed to take place after a formal lesson over how to create Box and Whisker plots. For this activity, students will be given a labeled bar graph of the Pokémon Type Distribution for generations 1 through 6 of Pokémon, which I have listed an online data source below. The students will be tasked with identifying the top 7 Pokémon types and creating a Box and Whiskers plots for each of those types. They will then go through and analyze the consistency of the creation of Pokémon for that specific type and then compare contrast this same box plot to any other box plot of their choice. The students will then make predications for the number of Pokémon for each of the top 7 Pokémon types, for generation 7 and base their reasoning in the box plots they created. Then the student will finally research the type distributions for the 7^{th} generation of Pokémon, and discuss how the actual number compares to their prediction.

This is the online source for the type distributions for generations 1 – 6:

https://plot.ly/~powersurge360/6.embed

How does this topic extend what your students should have learned in previous courses?

From my experience, Box Plots are first taught in the early middle school years, in 6^{th} or 7^{th} grade. When constructing box plots by hand, in its essence, box plots require knowledge of how to order sets of numbers from least to greatest; an understanding and ability to find the maximum, minimum, median, and mean of a data set; and lastly, critical thinking and analytic skills developed from general course content. Box plots allow students to combine each of these skills to effectively analyze data sets with ease and compare different data sets with precision and accuracy. If any or all of these skills are not quite up to par, students will have an opportunity to develop them through box plots as they spend time creating them. For all students no matter their level, they will still gain better insight on how to properly analyze data and grow as analytical thinkers as they take the represented data and turn it into meaningful interpretations.

How can technology be used to effectively engage students with this topic?

In a classroom, I personally believe that Desmos is a wonderful online tool that can aid students in the understanding of how box and whisker plots function, and also a great place to check their work. Desmos, which is linked below, gives students the ability to list as many data points as they need to, and concurrently creates a box plot as they do so. In this way, students are able to see how singular data points can skew the data in significant and insignificant amounts. What I also love about Desmos is that, the list of data points does not have to be in any kind of order, so students do not have to worry about that tedious step! Desmos also lists the 5-point summary in two different places, on the box plot itself, and also on a drop-down menu, which is super convenient. Lastly, I love how Desmos also displays the mean of the data set as well, students can calculate the skew of the data, and definitively determine how it is skewed. This is a super visual, and interactive tool that will allow the student to manipulate box plots so seamlessly they will not be focused on the tediousness of the setup and solely on the concept.

The link to the Desmos setup is here: https://www.desmos.com/calculator/h9icuu58wn