# Predicate Logic and Popular Culture (Part 233): Panic! At The Disco

Let $F(x)$ be the statement “$x$ feels good,” let $H(x)$ be the statement “$x$ tastes good,” let $M(x)$ be the statement “$x$ is mine,” and let $H$ be the set of all things. Translate the logical statement

$\forall x \in H( (F(x) \land H(x)) \Rightarrow M(x))$.

This matches a line from “Emperor’s New Clothes” by Panic! At The Disco.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 232): Limp Bizkit

Let $B(x)$ be the statement “$x$ knows what it’s like to be the bad man,” let $H(x)$ be the statement “$x$ knows what it’s like to be hated,” and let $P$ be the set of all people. Translate the logical statement

$\forall x \in P(\lnot B(x) \land \lnot H(x))$.

This matches the opening lines of “Behind Blue Eyes” by Limp Bizkit.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 231): Aristocats

Let $C(x)$ be the statement “$x$ wants to be a cat,” and let $P$ be the set of all people. Translate the logical statement

$\forall x in P(C(x))$.

This matches the opening line of “Everyone Wants to be a Cat” from the movie “The Aristocats.”

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 230): Dean Lewis

Let $W(t)$ be the statement “It is easy to walk away at time $t$,” and let $T$ be the set of all times. Translate the logical statement

$\forall t \in T(\lnot W(t))$.

This matches part of the chorus of “Be Alright” by Dean Lewis.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 229): Mean Girls

Let $W(t)$ be the statement “$t$ is a Wednesday,” let $P(t)$ be the statement “We wear pink at time $t$,” and let $T$ be the set of all times. Translate the logical statement

$\forall t \in T(W(t) \Rightarrow P(t))$.

This matches a line from the movie “Mean Girls.”

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 228): Hannah Montana

Let $M(x)$ be the statement “$x$ makes mistakes,” let $D(x)$ be the statement “$x$ has those days,” and let $P$ be the set of all people. Translate the logical statement

$\forall x \in P(M(x) \land D(x))$.

This matches the opening lines of “Nobody’s Perfect” by Hannah Montana.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 227): Dr. Seuss

Let $F(x)$ be the statement “Funny things are at $x$,” and let $P$ be the set of all places. Translate the logical statement

$\forall x \in P(F(x))$.

This matches the opening line of the children’s book One Fish, Two Fish, Red Fish, Blue FishÂ by Dr. Seuss.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 226): Wicked

Let $C(t)$ be the statement “On day $t$, there’ll be a celebration throughout Oz that’s all to do with me,” and let $T$ be the set of all times. Translate the logical statement

$\exists t \in T(C(t))$.

This matches a line from “The Wizard and I” from the Broadway production of Wicked.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 225): George Jones

Let $D(t)$ be the statement “I am dead at time $t$,” let $L(t)$ be the statement “I love you at time $t$,” and let $T$ be the set of all times. Translate the logical statement

$\forall t \in T(\lnot D(t) \Rightarrow L(t))$.

This matches the opening line of arguably the greatest country song ever, “He Stopped Loving Her Today” by George Jones.

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

# Predicate Logic and Popular Culture (Part 224): Robert Frost

Let $G(x)$ be the statement “$x$ is gold,” let $S(x)$ be the statement “$x$ can stay,” and let $H$ be the set of all things. Translate the logical statement

$\forall x \in H(G(x) \Rightarrow \lnot S(x))$.

This matches the title of a Robert Frost poem, shown below recited in the movie “The Outsiders.”

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.