The Incomplete Gamma and Confluent Hypergeometric Functions (Part 2)

In this series of posts, I confirm this curious integral:

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \displaystyle \frac{z^a e^{-z}}{a} M(1, 1+a, z),

where the confluent hypergeometric function M(a,b,z) is

M(a,b,z) = \displaystyle 1+\sum_{s=1}^\infty \frac{a(a+1)\dots(a+s-1)}{b(b+1)\dots (b+s-1)} \frac{z^s}{s!}.

This integral can be confirmed — unsatisfactorily confirmed, but confirmed — by differentiating the right-hand side. For the sake of simplicity, I restrict my attention to the case when a is a positive integer. To begin, the right-hand side is

\displaystyle \frac{z^a e^{-z}}{a} M(1, 1+a, z) = \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{1 \cdot 2 \cdot \dots \cdot s}{(a+1)(a+2)\dots (a+s)} \frac{z^s}{s!} \right]

= \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{1}{(a+1)(a+2)\dots (a+s)} z^s \right]

= \displaystyle \frac{z^a e^{-z}}{a} \left[1 + \sum_{s=1}^\infty \frac{a!}{(a+s)!} z^s \right]

= \displaystyle \frac{z^a e^{-z}}{a} \sum_{s=0}^\infty \frac{a!}{(a+s)!} z^s

= \displaystyle e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s}.

We now differentiate, first by using the Product Rule and then differentiating the series term-by-term (blatantly ignoring the need to confirm that term-by-term differentiation applies to this series):

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] = \displaystyle \frac{d}{dz} \left[ e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} \right]

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \frac{d}{dz} \left[  \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} \right]

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} \frac{d}{dz} z^{a+s}

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} (a+s) z^{a+s-1}

= -e^{-z} \displaystyle \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1}.

We now shift the index of the first series:

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] =-e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} + e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1}.

By separating the s=0 term of the second series, the right-hand side becomes:

\displaystyle -e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} + e^{-z} \frac{(a-1)!}{(a-1)!} z^{a-1} + e^{-z} \sum_{s=1}^\infty \frac{(a-1)!}{(a+s-1)!} z^{a+s-1} = e^{-z} z^{a-1}$

since the two infinite series cancel. We have thus shown that

\displaystyle \frac{d}{dz} \left[\frac{z^a e^{-z}}{a} M(1, 1+a, z) \right] = \frac{e^{-z} z^{a-1}}{a}.

Therefore, we may integrate the right-hand side:

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \left[\frac{t^a e^{-t}}{a} M(1, 1+a, t) \right]_0^z

\displaystyle = \frac{z^a e^{-z}}{a} M(1, 1+a, z) - \frac{0^a e^{0}}{a} M(1, 1+a, 0)

\displaystyle = \frac{z^a e^{-z}}{a} M(1, 1+a, z).

While this confirms the equality, this derivation still feels very unsatisfactory — we basically guessed the answer and then confirmed that it worked. In the next few posts, I’ll consider the direct verification of this series.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.