Solving Problems Submitted to MAA Journals: Index

I’m doing something that I should have done a long time ago: collecting a series of posts into one single post. The links below show my series on solving problems submitted to the journals of the Mathematical Association of America.

Part 1: Introduction

Part 2a: Suppose that X and Y are independent, uniform random variables over [0,1]. Now define the random variable Z by

Z = (Y-X) {\bf 1}(Y \ge X) + (1-X+Y) {\bf 1}(Y<X).

Prove that Z is uniform over [0,1]. Here, {\bf 1}[S] is the indicator function that is equal to 1 if S is true and 0 otherwise.

Part 2b: Suppose that X and Y are independent, uniform random variables over [0,1]. Define U_X, V_X, B_X, and W_X as follows:

U_X is uniform over [0,X],

V_X is uniform over [X,1],

B_X \in \{0,1\} with P(B_X=1) = X and P(B_X=0)=1-X, and

W_X = B_X \cdot U_X + (1-B_X) \cdot V_X.

Prove that W_X is uniform over [0,1].

Part 3: Define, for every non-negative integer n, the nth Catalan number by

C_n := \displaystyle \frac{1}{n+1} {2n \choose n}.

Consider the sequence of complex polynomials in z defined by z_k := z_{k-1}^2 + z for every non-negative integer k, where z_0 := z. It is clear that z_k has degree 2^k and thus has the representation

z_k =\displaystyle \sum_{n=1}^{2^k} M_{n,k} z^n,

where each M_{n,k} is a positive integer. Prove that M_{n,k} = C_{n-1} for 1 \le n \le k+1.

Part 4: Let A_1, \dots, A_n be arbitrary events in a probability field. Denote by B_k the event that at least k of A_1, \dots A_n occur. Prove that \displaystyle \sum_{k=1}^n P(B_k) = \sum_{k=1}^n P(A_k).

Parts 5a, 5b, 5c, 5d, and 5e: Evaluate the following sums in closed form:

\displaystyle \sum_{n=0}^\infty \left( \cos x - 1 + \frac{x^2}{2!} - \frac{x^4}{4!} \dots + (-1)^{n-1} \frac{x^{2n}}{(2n)!} \right)

and

\displaystyle \sum_{n=0}^\infty \left( \sin x - x + \frac{x^3}{3!} - \frac{x^5}{5!} \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} \right).

Parts 6a, 6b, 6c, 6d, and 6e: Two points P and Q are chosen at random (uniformly) from the interior of a unit circle. What is the probability that the circle whose diameter is segment \overline{PQ} lies entirely in the interior of the unit circle?

Parts 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, and 7i: Let X and Y be independent normally distributed random variables, each with its own mean and variance. Show that the variance of X conditioned on the event X>Y is smaller than the variance of X alone.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.