Solving Problems Submitted to MAA Journals (Part 7b)

The following problem appeared in Volume 131, Issue 9 (2024) of The American Mathematical Monthly.

Let X and Y be independent normally distributed random variables, each with its own mean and variance. Show that the variance of X conditioned on the event X>Y is smaller than the variance of X alone.

Not quite knowing how to start, I decided to begin by simplifying the problem and assume that both X and Y follow a standard normal distribution, so that E(X) = E(Y) = 0 and \hbox{SD}(X)=\hbox{SD}(Y) = 1. This doesn’t solve the original problem, of course, but I hoped that solving this simpler case might give me some guidance about tackling the general case. I solved this special case in the previous post.

Next, to work on a special case that was somewhere between the general case and the first special case, I kept X as a standard normal distribution but changed Y to have a nonzero mean. As it turned out, this significantly complicated the problem (as we’ll see in the next post), and I got stuck.

So I changed course: for a second attempt, I kept X as a standard normal distribution but changed Y so that E(Y) = 0 and \hbox{SD}(Y) = \sigma, where \sigma could be something other than 1. The goal is to show that

\hbox{Var}(X \mid X > Y) = E(X^2 \mid X > Y) - [E(X \mid X > Y)]^2 < 1.

We begin by computing E(X \mid X > Y) = \displaystyle \frac{E(X I_{X>Y})}{P(X>Y)}. The denominator is straightforward: since X and Y are independent normal random variables, we also know that X-Y is normally distributed with E(X-Y) = E(X)-E(Y) = 0. (Also, \hbox{Var}(X-Y) = \hbox{Var}(X) + (-1)^2 \hbox{Var}(Y) = \sigma^2+1, but that’s really not needed for this problem.) Therefore, P(X>Y) = P(X-Y>0) = \frac{1}{2} since the distribution of X-Y is symmetric about its mean of 0.

Next, I wrote Y = \sigma Z, where Z has a standard normal distribution. Then

E(X I_{X>\sigma Z}) = \displaystyle \frac{1}{2\pi} \int_{-\infty}^\infty \int_{\sigma z}^\infty x e^{-x^2/2} e^{-z^2/2} \, dx dz,

where we have used the joint probability density function for the independent random variables X and Z. The region of integration is \{(x,z) \in \mathbb{R}^2 \mid x > \sigma z \}, matching the requirement X > \sigma Z. The inner integral can be directly evaluated:

E(X I_{X>Y}) = \displaystyle \frac{1}{2\pi} \int_{-\infty}^\infty \left[ -e^{-x^2/2} \right]_{\sigma z}^\infty e^{-z^2/2} \, dz

= \displaystyle \frac{1}{2\pi} \int_{-\infty}^\infty \left[ 0 + e^{-\sigma^2 z^2/2} \right] e^{-z^2/2} \, dz

= \displaystyle \frac{1}{2\pi} \int_{-\infty}^\infty e^{-(\sigma^2+1) z^2/2} \, dz.

At this point, I rewrote the integrand to be the probability density function of a random variable:

E(X I_{X>Y}) = \displaystyle \frac{1}{\sqrt{2\pi} \sqrt{\sigma^2+1}} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi} \sqrt{ \frac{1}{\sigma^2+1}}} \exp \left[ -\frac{z^2}{2 \cdot \frac{1}{\sigma^2+1}} \right] \, dz.

The integrand is the probability density function of a normal random variable with mean 0 and variance \sigma^2+1, and so the integral must be equal to 1. We conclude

E(X \mid X>Y) = \displaystyle \frac{E(X I_{X>Y})}{P(X>Y)} = \frac{ \frac{1}{\sqrt{2\pi(\sigma^2+1)}} }{ \frac{1}{2} } = \sqrt{\frac{2}{\pi(\sigma^2+1)}}.

Next, we compute the other conditional expectation:

E(X^2 \mid X > \sigma Z) = \displaystyle \frac{E(X^2 I_{X>\sigma Z})}{P(X>\sigma Z)} = \displaystyle \frac{2}{2\pi} \int_{-\infty}^\infty \int_{\sigma z}^\infty x^2 e^{-x^2/2} e^{-z^2/2} \, dx dz.

The inner integral can be computed using integration by parts:

\displaystyle \int_{\sigma z}^\infty x^2 e^{-x^2/2} \, dx = \int_{\sigma z}^\infty x \frac{d}{dx} \left( -e^{-x^2/2} \right) \, dx

= \displaystyle \left[-x e^{-x^2/2} \right]_{\sigma z}^\infty + \int_{\sigma z}^\infty e^{-x^2/2} \, dx

= \sigma z e^{-\sigma^2 z^2/2} + \displaystyle \int_{\sigma z}^\infty e^{-x^2/2} \, dx.

Therefore,

E(X^2 \mid X > \sigma Z) = \displaystyle \frac{1}{\pi} \int_{-\infty}^\infty \sigma z e^{-\sigma^2 z^2/2} e^{-z^2/2} \, dz + 2 \int_{-\infty}^\infty \int_{\sigma z}^\infty \frac{1}{2\pi} e^{-x^2/2} e^{-z^2/2} \, dx dz

= \displaystyle \frac{1}{\pi} \int_{-\infty}^\infty \sigma z e^{-(\sigma^2+1) z^2} \, dz + 2 \int_{-\infty}^\infty \int_{\sigma z}^\infty \frac{1}{2\pi} e^{-x^2/2} e^{-z^2/2} \, dx dz.

We could calculate the first integral, but we can immediately see that it’s going to be equal to 0 since the integrand z e^{-(\sigma^2+1) z^2} is an odd function. The double integral is equal to P(X>\sigma Z), which we’ve already shown is equal to \frac{1}{2}. Therefore, E(X^2 \mid X > Y) = 0 + 2 \cdot \frac{1}{2} = 1.

We conclude that

\hbox{Var}(X \mid X > Y) = E(X^2 \mid X > Y) - [E(X \mid X > Y)]^2 = 1 - \displaystyle \frac{2}{\pi(\sigma^2 + 1)},

which is indeed less than 1. If \sigma = 1, we recover the conditional variance found in the first special case.

After tackling these two special cases, we start the general case with the next post.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.